Tag: logarithm and its uses
Questions Related to logarithm and its uses
Let $A=\dfrac{1}{6}((\log _{2}{3}))^{3}-(\log _{2}{6}))^{3}-(\log _{2}{12}))^{3}+(\log _{2}{24}))^{3})$. Then the value of $2^{A}$ is :
If $x=500,y=100$ and $z=5050$, then the value of $(\log _{ xyz }{ { x }^{ z } } )(1+\log _{ x }{ yz } )$ is equal to.
The value of $(0.2)^{log _{\sqrt{5}} \left(\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ...\right)}$ is
Find the mantissa of the logarithm of the number $0.002359$.
The domain of the function $f(x)=[log _{10}(\frac{5x-x^2}{4})]^{{1}/{2}}$ is
If $A=log _2 log _2 log _4 256+2 log \sqrt { 2 } 2$ then A=
The value of $\displaystyle \log _{\frac{1}{20}}40$ is
The value of $\displaystyle \log _{\frac{2}{3}}\frac{5}{6}$ is
Value of $\displaystyle \log _{4}18 $ is:
$\log _4 $1 is equal to