Tag: cartesian product

Questions Related to cartesian product

If $n(A) = 4$ and $n(B) = 5$, then $n(A \times  B) = $

  1. $20$

  2. $25$

  3. $4$

  4. $15$


Correct Option: A
Explanation:

Given, $n\left( A \right) =4$ and $n\left( B \right) =5$ 

$ \Rightarrow n\left( A\times B \right) =n\left( A \right) \cdot n\left( B \right) $ 
$\Rightarrow  n(A\times B)=4\cdot 5=20$ 
So, answer is $20$.

State True or False
Let $A = \{1, 2\}$ and $B = \{2, 3, 4\}$, then A $\times$ B = B $\times$ A ?
  1. True

  2. False


Correct Option: B
Explanation:

Product of two sets is the set of ordered pairs formed by mapping every element from the first set to every element of the second set.

So, $ A \times B = $ { $ (1,2), (1,3), (1,4), (2,2), (2,3), (2,4) $ }

And $ B \times A = $ { $ (2,1), (2,2), (3,1), (3,2), (4,1), (4,2) $ }

Clearly, $ A \times B \neq B \times A $

If $A=\left{ 2,4,5 \right} , B=\left{ 7,8,9 \right} $ then $n(A\times B)$ is equal to-

  1. $6$

  2. $9$

  3. $3$

  4. $0$


Correct Option: B
Explanation:

Given $n(A)=3,$  and $n(B) =3$
Hence $n(A\times B) = 3\times 3=9$

If $A = \left{2,3\right}$ and $B = \left{1,2\right}$, then $A \times B$ is equal to 

  1. $\left{(2,1), (2,2), (3,1), (3,2)\right}$

  2. $\left{(1,2), (1,3), (2,2), (2,3)\right}$

  3. $\left{(2,1), (3,2)\right}$

  4. $\left{(1,2), (2,3)\right}$


Correct Option: A
Explanation:

If $A$ and $B$ are any two non-empty sets.
then $A\times B$$=\left{(x,y):x\in A  and  y\in B\right}$
As $A = \left{2,3\right}$ and $B = \left{1,2\right}$
$A \times B$$=\left{(2,1), (2,2), (3,1), (3,2)\right}$
Hence, option A.

If $\displaystyle A=\left{ 2,4,5 \right} ,B=\left{ 7,8,9 \right} $ then $\displaystyle n\left( A \times B \right) $ is equal to

  1. $6$

  2. $9$

  3. $3$

  4. $0$


Correct Option: B
Explanation:

$\displaystyle A=\left{ 2,4,5 \right} ,B=\left{ 7,8,9 \right} $

$\Rightarrow n(A)=3$  and  $n(B)=3$

$\therefore  n(A\times B)=n(A)n(B)=9$

Hence, option B.

If $\displaystyle n\left ( A\times B \right )=36$ then n(A) can possibly be____

  1. $7$

  2. $8$

  3. $9$

  4. $10$


Correct Option: C
Explanation:

$n(A\times B)=n(A)\times n(B)$


Hence $n(A)$ must be a factor of $36$. only possible answer is $B:9$

If $(3p+q,p-q)=(p-q,3p+q)$, then:

  1. $p=q=0$

  2. $p=q$

  3. $p=2q$

  4. $p+q=0$


Correct Option: D
Explanation:

As the ordered pairs are equal,
$ 3p + q = p - q $
$  => 2p = -2q $
$ => 2p + 2q = 0 $
$ => p + q = 0 $


If $\displaystyle n\left ( P\times Q \right )=0$  then n(P) can possibly be

  1. 0

  2. 10

  3. 20

  4. Any value


Correct Option: D
Explanation:

$ n(P) $ can be of any value as we are not sure of $ n(Q) $
Hence, $ n(P) $ can take any of the given values.

If $A=\left {1, 2,3\right }$ and $B=\left {3,8\right }$, then $(A\cup B)\times (A\cap B)$ is equal to

  1. $\left {(8,3), (8,2), (8,1), (8,8)\right }$

  2. $\left {(1,2), (2,2), (3,3), (8,8)\right }$

  3. $\left {(3,1), (3,2), (3,3), (3,8)\right }$

  4. $\left {(1,3), (2,3), (3,3), (8,3)\right }$


Correct Option: D
Explanation:

Given, $A=\left {1, 2,3\right }$ and $B=\left {3,8\right }$,
Therefore, $A\cup B=\left {1,2,3\right }\cup \left {3,8\right }=\left {1,2,3,8\right }$
and $A\cap B=\left {1,2,3\right }\cap \left {3,8\right }=\left {3\right }$
$\therefore (A\cup B)\times (A\cap B)=\left {1,2,3,8\right }\times \left {3\right }$
$=\left {(1,3), (2,3), (3,3), (8,3)\right }$

What is the Cartesian product of $A = \left {1, 2\right }$ and $B = \left {a, b\right }$?

  1. $\left {(1, a), (1, b), (2, a), (b, b)\right }$

  2. $\left {(1, 1), (2, 2), (a, a), (b, b)\right }$

  3. $\left {(1, a), (2, a), (1, b), (2, b)\right }$

  4. $\left {(1, 1), (a, a), (2, a), (1, b)\right }$


Correct Option: C
Explanation:

If $A $ and $B$ are two non empty sets, then the Cartesian product $A \times B$ is set of all ordered pairs $(a,b)$ such that $a\in A$ and $b\in B$.


Given $A ={1,2}$ and $B = {a,b}$

Hence $A\times B = {(1,a),(1,b),(2,a),(2,b)}$