Tag: cartesian product of sets

Questions Related to cartesian product of sets

The number of ordered pairs (x, y) of natural numbers satisfy the equation $x^2+y^2+2xy-2018x-2018y-2019^o=0$ is?

  1. $0$

  2. $1009$

  3. $2018$

  4. $2019$


Correct Option: A

The number of ordered triplet $\left(x,y,z\right),x,y,z$ are positive integers satisfying $xyz=105$

  1. $15$

  2. $27$

  3. $54$

  4. $35$


Correct Option: A

If $\int\dfrac{2\cos x-\sin x+\lambda}{\cos x-\sin x-2}dx=A In\left|\cos x+\sin x-2\right|+Bx+C$. Then the ordered triplet $\left(A,B,\lambda\right)$, is 

  1. $\left(\dfrac{1}{2},\dfrac{3}{2},-1\right)$

  2. $\left(\dfrac{3}{2},\dfrac{1}{2},-1\right)$

  3. $\left(\dfrac{1}{2},-1, \dfrac{3}{2}\right)$

  4. $\left(\dfrac{3}{2},-1, \dfrac{1}{2}\right)$


Correct Option: A

If $A={1, 2, 3}$ and $B={3, 8}$, then $(A\cup B)\times (A\cap B)$ is

  1. ${(3, 1), (3, 2), (3, 3), (3, 8)}$

  2. ${(1, 3), (2, 3), (3, 3), (8, 3)}$

  3. ${(1, 2), (2, 2), (3, 3), (8, 8)}$

  4. ${(8, 3), (8, 2), (8, 1), (8, 8)}$


Correct Option: B
Explanation:

$A\cup B={1,2,3,8}$
$A\cap B={3}$
$\therefore (A\cup B)\times (A\cap B)$
$={(1,3),(2,3),(3,3),(8,3)}$

Let $A=\left { 1,2,3 \right }$ and $B=\left { a,b \right }$.Which of the following subsets of $A\times B$ is a mapping from $A$ to $B$

  1. $\left { \left ( 1,a \right ),\left ( 3,b \right ),\left ( 2,a \right ),\left ( 2,b \right ) \right }$

  2. $\left { \left ( 1,b \right ),\left ( 2,a \right ),\left ( 3,a \right ) \right }$

  3. $\left { \left ( 1,a \right ),\left ( 2,b \right ) \right }$

  4. none of these


Correct Option: A,B,C
Explanation:

$A=\left{ 1,2,3 \right} \ B=\left{ a,b \right} \ A\times B=\left{ \left( 1,a \right) ,\left( 2,a \right) ,\left( 3,a \right) ,\left( 1,b \right) ,\left( 2,b \right) ,\left( 3,b \right)  \right} .$


$ \left{ \left( 1,a \right) ,\left( 3,b \right) ,\left( 2,a, \right) \left( 2,b \right)  \right} \subset A\times B$

$ \left{ \left( 1,b \right) ,\left( 2,a \right) ,\left( 3,a \right)  \right} \subset A\times B$

$ \left{ \left( 1,a \right) ,\left( 2,b \right)  \right} \subset A\times B$

Let $ A= { 1,2,3,.......50} $ and $B={2,4,6.......100}$ .The number of elements $\left ( x, y \right )\in A\times B$ such that $x+y=50$

  1. $24$

  2. $25$

  3. $50$

  4. $75$


Correct Option: A
Explanation:

The elements will be
$(2,48),(48,2)$
$(4,46), (46,4)$
:
:
$(2n,50-2n), (50-2n,2n)$
Now we have
$2,4,6,8...$ upto $48$
This forms an A.P
The number terms is $24$.

If the cardinality of a set $A$ is $4$ and that of a set $B$ is $3$, then what is the cardinality of the set $A\Delta B$.

  1. $1$

  2. $5$

  3. $7$

  4. $Cannot\ be\ determined$


Correct Option: D
Explanation:

$n(A\Delta B)=n(A)+n(B)-n(A\cap B)$

Here we don`t know the $n(A\cap B)$

So the answer cannot be Determined.


Let A and B be two sets such that $A\times B=\left{ \left( a,1 \right) ,\left( b,3 \right) ,\left( a,3 \right) ,\left( b,1 \right) ,\left( a,2 \right) ,\left( b,2 \right)  \right} ,$ then 

  1. $A=\left{ 1,2,3 \right} $ and $B=\left{ a,b \right} $

  2. $A=\left{ a,b \right} $ and$ B=\left{ 1,2,3 \right} $

  3. $A=\left{ 1,2,3 \right} $ and $B\subset \left{ a,b \right} $

  4. $A\subset \left{ a,b \right} $ and $B\subset \left{ 1,2,3 \right} $


Correct Option: B
Explanation:

$A$ is the first  element in  the cartesian product $A\times B=\left{a\,,b\,,a\,,b\,,a\,,b\right}$

and $B$ is the second element in  the cartesian product $A\times B=\left{1,\,3\,,3\,,1\,,2\,,2\right}$
$\therefore$ elements of $A=\left{a,b\right}$ and $B=\left{1\,,2\,,3\right}$

If $(x, y) = (3, 5)$ ; then values of $x$  and $y $ are 

  1. 3 and 5

  2. 4 and 7

  3. -1 and 17

  4. 2 and 4


Correct Option: A
Explanation:

x has to be 3 and y has to be 5.

State whether the following statement is True or False.
If (x, y) = (3, 5) ; then x= 3 and y = 5

  1. True

  2. False


Correct Option: A
Explanation:

By rule of ordered pairs this statement is true.