Tag: fundamental and derived units

Questions Related to fundamental and derived units

Kilowatt hour (kWh) represents the unit of 

  1. Power

  2. Impulse

  3. Momemtum

  4. Energy


Correct Option: D
Explanation:

Using the equation: $ Energy = Power\  delivered \times  Time $
We can see that unit of energy or work done can also be written as product of units of power and time.

SI unit of $g$ i.e. the acceleration due to gravity is 

  1. $m^2/s$

  2. $m/s^2$

  3. $s/m^2$

  4. $m/s$


Correct Option: B
Explanation:

The value of g = 9.80665 $m/s^{2}$. This means that for every second that elapses, velocity changes 9.80665 meters per second.

Pressure depends on distance as, $P=\dfrac{\alpha}{\beta}exp\left(-\dfrac{\alpha z}{k\theta}\right)$, where $\alpha, \beta$ are constants, z is distance, k is Boltzmann's constant and $\theta$ is temperature. The dimension of $\beta$ are.

  1. $M^0L^0T^0$

  2. $M^{-1}L^{-1}T^{-1}$

  3. $M^0L^2T^0$

  4. $M^{-1}L^1T^2$


Correct Option: C
Explanation:
Given, 

$P=\dfrac{\alpha}{\beta}e^{\dfrac{-\alpha z}{k\theta}}$

Since, the exponentials are devoid of dimensions, the exponential part of the equation is ignored.  

Rest we have, $P=\dfrac{\alpha}{\beta}$

Since, $\dfrac{\alpha z}{k\theta}=Dimensionless$

$\alpha=\dfrac{k\theta}{z}$

Kinetic energy $=\dfrac 32 kT$

$k=\dfrac{K.E}{T}$

$\implies [k]=[M^1L^2T^{-2}][K^{-1}]$

$\implies [z]=[L^{-1}]$

$\implies [\theta]=[K^{-1}]$

From these, we get the values of $\alpha$ as,

$[\alpha]=[M^1L^1T^{-2}]$

Now, we know the dimension of prressure, 

$[P]=M^1l^{-1}t^{-2}]$

$\beta=\dfrac{\alpha}{P}$

$\implies \beta=\dfrac{[M^1L^1T^{-2}]}{[M^1L^{-1}T^{-2}]}$

$\implies \beta=[M^0L^2T^0]$

Which of the following is not the unit of mobility?

  1. $\frac { }{ V s } $

  2. $\frac { }{ ohm C } $

  3. ${ }{ V C } $

  4. $\frac {Cs }{ kg } $


Correct Option: C

The unit of Stefans constant $\sigma$ is:

  1. $\dfrac{{watt}^{4}}{m{K}^{4}}$

  2. $\dfrac{calorie}{{m}^{2}{K}^{4}}$

  3. $\dfrac{watt}{{m}^{2}{K}^{4}}$

  4. $\dfrac{joule}{{m}^{2}{K}^{4}}$


Correct Option: C

If $ \overline { A }  $ and $ \overline { B }  $ two different physical quantities, Which of the following mathematical operations is/are valid.

  1. $ \overline { A } $ + $ \overline { B } $

  2. $ \overline { A } .\overline { B } $

  3. $ \overline { A } \times \overline { B } $

  4. Both and (b) and (c)


Correct Option: D
Explanation:
Since $\vec A$ and $\vec B$ are different physical quantity, thus their unit will be different, only those quantity can be added or subtracted with each other if their units are same.
So, $\vec A+\vec B$  has no  and $\vec A\times \vec B$ physical significance were $\vec A.\vec B$ and $\vec A\times \vec B$are valid as they are the product operation 
Option $D$ is correct.


SI unit of modulus of elasticity is

  1. $pascal$

  2. $k g \cdot m / s ^ { 2 }$

  3. $N / m ^ { 2 }$

  4. $k g , m$


Correct Option: A
Explanation:

The SI unit of a modulus is the pascal $(Pa)$. A higher modulus typically indicates that the material is harder to deform.

The SI unit of permeability of free space is

  1. $\cfrac { \text { weber } } { \text { ampere } }$

  2. $\cfrac { \text { henry } } { \text { ampere } }$

  3. $\cfrac { \text { tesla } } { \text { ampere-meter } }$

  4. $\cfrac { \text { weber } } { \text { ampere-meter } }$


Correct Option: D

The value of Faraday number in SI unit is:

  1. $ 9.65 coulomb/kg-equivalent $

  2. $ 9.65\times 10^7 coulomb/kg-equivalent $

  3. $ 9.65\times 10^{-7} coulomb/kg-equivalent $

  4. $ 9.65 \ coulomb/g  -equivalent $


Correct Option: B
Explanation:

Faraday is the charge of 1 mole of electron
That is, $6.022 \times { 10 }^{ 23 } \times 1.60217646 \times { 10 }^{ -19 }\ = 9.65 \times { 10 }^{ 4 } C/g-equivalent \ = 9.65 \times { 10 }^{ 7 }C/kg-equivalent$

SI unit of heat capacity is

  1. joule

  2. joule/kilogram

  3. joule/(kilogram x kelvin)

  4. joule/kelvin


Correct Option: D
Explanation:

Heat capacity is a physical property of matter, defined as the amount of heat to be supplied to a given mass of a material to produce a unit change in its temperatureThe SI unit for heat capacity of an object is joule per kelvin ($J/K$ or $J k^{-1}$).