Tag: some special sequences

Questions Related to some special sequences

The expression $(x + 1)(x + 2)(x + 3)(x + 4) + 1$ is a 

  1. perfect square

  2. cube

  3. quartic polynomial

  4. none of the above


Correct Option: A
Explanation:

Solving

$(x+1)(x+2)(x+3)(x+4)+1$
$Multiplying\ first\ bracket\ with\ last\ and\ second\ to\ the\ third\ one$
$(x^2+5x+4)(x^2+5x+6)+1$
$Replacing\ x^2+5x+4\ by\ 'B'$
$(B)(B+2)+1$
$B^2+2B+1$
$(B+1)^2=(x^2+5x+5)^2$
Hence $L.H.S.$ is the $Perfect\ Square$ of $(x^2+5x+5)$



$\cfrac { { \left( 963+476 \right)  }^{ 2 }+{ \left( 963-476 \right)  }^{ 2 } }{ \left( 973\times 963+476\times 476 \right)  } =$?

  1. $1449$

  2. $497$

  3. $2$

  4. $4$

  5. None of these


Correct Option: C
Explanation:

Given Exp.$=\cfrac { { \left( a+b \right)  }^{ 2 }+{ \left( a-b \right)  }^{ 2 } }{ \left( { a }^{ 2 }+{ b }^{ 2 } \right)  } =\cfrac { 2\left( { a }^{ 2 }+{ b }^{ 2 } \right)  }{ \left( { a }^{ 2 }+{ b }^{ 2 } \right)  } =2$

By what least number $21600$ must be multiplied to make it a perfect cube?

  1. $6$

  2. $10$

  3. $30$

  4. $60$


Correct Option: B
Explanation:

$21600 $ can be factorized as $6\times 6\times 6\times 10\times 10$

To make it perfect cube, it must be multiplied by $10$.

A square is inscribed in the circle $x^2+y^2-10x- 6y +30=0$. One side of the square is parallel to $y=x+3$. Then which of the following can be a vertex of the square

  1. $(3, 3)$

  2. $(7, 3)$

  3. $(5, 5)$

  4. $(1, 1)$


Correct Option: A,B

For real number $a,b,c$ and $d$ , if $a^2+b^2=4$ and $c^2+d^2=1$, then possible value of $ac+bd$ is / are 

  1. $2$

  2. $3$

  3. $1$

  4. $\dfrac{1}{4}$


Correct Option: A,C,D
Explanation:

According to Cauchy-Schwarz inequality:


$(ac+bd)^2\le(a^2+b^2)(c^2+d^2)$      $(\forall a, b, c, d \in \mathbb{R})$

Substituting the values here gives:

$(ac+bd)^2\le4$

$(ac+bd)^\le2$

Therefore, it can take all values given in the options except 3.

What is the least number that must be added to $594$ to make sum a perfect square?

  1. $13$

  2. $29$

  3. $31$

  4. $33$


Correct Option: C
Explanation:

First calculate the square-root of $594$

$\sqrt{594}\approx 24.37$

The whole number larger than $24.37$ is $25$

and $(25)^{2}=625$

Now, $625$ is a perfect square.

So, the least number that must be added to $594$ to make sum a perfect square is $=625-594=31$

A rectangle with integer side length has perimeter $10$. What is the greatest numbers of these rectangles that can be cut from a piece of paper with width $24$ and length $60$?

  1. $144$

  2. $180$

  3. $240$

  4. $360$

  5. $480$


Correct Option: D
Explanation:

If a rectangle has perimeter 10 then the sum of its length and width is 5, giving two choice with integer sides:

$(i)2\times3$ rectangle of area $6$
$(ii)1\times4$ rectangle of area $4$
The piece of paper has area $24\times60=1400$
This can be divided into $12\times20=240$ rectangles with sides $2\times3$
It can be divided into $24\times15=360$ recatngles with sides $1\times4$
So, the greatest number of rectangles is $360$

Fourth roots of $193-4\sqrt{2178}$ is

  1. $(7-\sqrt{2})$

  2. $(5-\sqrt{2})$

  3. $(3-\sqrt{2})$

  4. $(10-\sqrt{7})$


Correct Option: C
Explanation:
According to Question

$(193-4\sqrt{2178} )^{1/4}$

$=(193-4\sqrt{11\times11\times3\times3\times2} )^{1/4}$

$=(193-4\times11\times3\sqrt2 )^{1/4}$

$=(121+72-132\sqrt{2} )^{1/4}$

$=(11^2+(6\sqrt2)^2-2\times11\times6\sqrt2)^{1/4}$                          $Using\ a^2+b^2-2ab=(a-b)^2$

$=(11-6\sqrt2)^{2\times0.25}$

$=(9+2-6\sqrt{2})^{0.5}$

$=(3^2+\sqrt{2}\ ^2-2\times3\times\sqrt{2})^{0.5}$                          $Using\ a^2+b^2-2ab=(a-b)^2$

$=(3-\sqrt{2})^{0.5\times2}$

$=3-\sqrt{2}$

$C$ is the right answer

The value of $1^{2}+3^{2}+5^{2}+.....25^{2}$ is:

  1. $1728$

  2. $1456$

  3. $2925$

  4. $1469$


Correct Option: C
Explanation:

$1^2+3^2+5^2+....+25^2$

$\Rightarrow$  $(1^2+2^2+3^2+4^2+....+25^2)-(2^2+4^2+6^2+8^2....24^2)$

$\Rightarrow$  $(1^2+2^2+3^2+4^2+...25^2)-[(2\times 1)^2+(2\times 2)^2+(2\times 3)^2+....(2\times 12)^2]$

$\Rightarrow$  $(1^2+2^2+3^2+....+25^2)-2^2(1^2+2^2+3^2+.....12^2)$

$1^2+2^2+3^2+...+n^2=\dfrac{n(n+1)(2n+1)}{6}$

$\Rightarrow$  $\dfrac{25(25+1)(2\times 25+1)}{6}-2^2\dfrac{12(12+1)(2\times 12+1)}{6}$

$\Rightarrow$  $\dfrac{25\times 26\times 51}{6}-4\times\dfrac{12\times 13\times 25}{6}$

$\Rightarrow$  $25\times 13\times 17-4\times 2\times 13\times 25$

$\Rightarrow$  $25\times 13(17-8)$

$\Rightarrow$  $25\times 13\times 9$

$\Rightarrow$  $2925$

Is it possible for the square of a number to end with 5 zeroes?
State true or false.

  1. True

  2. False


Correct Option: B
Explanation:

The square of a number with 'n' number of zeroes, will have $ 2 \times n $ zeroes. Hence, there cannot be $ 5 $ zeroes in a square of a number as it would be an even number.