Tag: 5-digit numbers

Questions Related to 5-digit numbers

The  expanded form of $101$ is

  1. $100+1$

  2. $99+1$

  3. $100 \times 1 +1$

  4. None of the above


Correct Option: C
Explanation:

The expanded form of:
$abc = a\times 100 + b\times 10+ c\times 1$

Here, for $101$
$101 = 100 \times 1 + 0\times 10 + 1\times 1= 1\times100 + 1$

Express the number into general form: $753$

  1. $7 \times 10 + 5 \times 100 + 3$

  2. $7 \times 100 + 5 \times 10 - 3$

  3. $7 \times 100 + 5 \times 10 + 3$

  4. $7 \times 100 + 5 \times 10 + 1$


Correct Option: C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
So, $753 = 7 \times 100 + 5 \times 10 + 3$


So, option C is correct.

Choose the correct answer if $6 \times 10 + 9$ is in general form. 

Find its usual form.

  1. $60$

  2. $69$

  3. $609$

  4. $600$


Correct Option: B
Explanation:

The usual form: $6 \times 10 +9 = 60+9 = 69$


So, option B is correct.

Determine the number into general form: $90$

  1. $9 \times 10 + 0$

  2. $9 \times 10 + 1$

  3. $9 \times 10 - 0$

  4. $9 \times 100 + 0$


Correct Option: A
Explanation:

The general form of any two digit number is, $ab = a \times 10 + b$
So, $9 \times 10 + 0$ is in general form.


So, option A is correct.

Find the numbers which are not in generalised form.

  1. $5 \times 100 + 6 \times 10 + 0$

  2. $2 \times 10 + 3 \times 10 + 1$

  3. $3 \times 100 + 2 \times 100 + 2$

  4. $2 \times 10 + 2$


Correct Option: B,C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $2 \times 10 + 3 \times 10 + 1$ and $3 \times 100 + 2 \times 100 + 2$ are not in generalised form.


So, options B and C are correct.

Choose the correct option which are in general form.

  1. $200 \times 4 + 10 \times 1 - 3$

  2. $1 \times 100 + 2 \times 10 + 3$

  3. $4 \times 100 + 3 \times 10 + 8$

  4. $12 \times 100 + 5 + 2 \times 10$


Correct Option: B,C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
So, $1 \times 100 + 2 \times 10 + 3$ and $4  \times 100 + 3 \times 10 + 8$ are in general form.


So, options B and C are correct.

Find the generalised number into usual form: $3 \times 100 + 3 \times 10 + 3$.

  1. $303$

  2. $333$

  3. $330$

  4. $300$


Correct Option: B
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $ 3 \times  100 + 3 \times  10 + 3 = 333 $
Hence, the solution is $333.$


So, option B is correct.

Check the option which are in general form.

  1. $6 \times 100 + 4 \times 10 + 0$

  2. $5 \times 100 - 4 \times 10 - 2$

  3. $6 \times 10 + 2 \times 10 + 2$

  4. $7 \times 100 + 9 - 1 \times 20$


Correct Option: A
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
So, $6 \times 100 + 4 \times 10 + 0$ is in general form.


So, option A is correct.

Find the number in general form: $875$

  1. $8 \times 10 + 7 \times 10 + 5$

  2. $8 \times 100 + 7 \times 10 + 5$

  3. $8 \times 100 + 7 \times 100 + 5$

  4. $8 \times 100 + 7 \times 10 + 50$


Correct Option: B
Explanation:

The general form of any three digits numbers is, $abc = a \times 100 + b \times 10 + c$
So, $875 = 8 \times 100 + 7 \times 10 + 5$


So, option B is correct.

If $4 \times 100 + 5 \times 10 + 0$ is in generalised form. Find its usual form.

  1. $400$

  2. $405$

  3. $450$

  4. $540$


Correct Option: C
Explanation:

The general form of any three numbers will be, $abc = a \times 100 + b \times 10 + c$
Here, $4 \times 100 + 5 \times 10 + 0 = 450 $
So, option C is correct.