Tag: exponent of a prime in n!

Questions Related to exponent of a prime in n!

There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P/Q has the value equal to :

  1. $^{ n }{ P } _{ { 2 }^{ - } }\quad ^{ m }{ P } _{ { m }^{ - } }\quad (n-2)!$

  2. $^{ m }{ P } _{ { 2 }^{ - } }\quad ^{ n }{ P } _{ { n }^{ - } }\quad (n-2)!$

  3. $^{ n }{ P } _{ { 2 }^{ - } }\quad ^{ n }{ P } _{ { n }^{ - } }\quad (m-2)!$

  4. none


Correct Option: A

Exponent of $4$ in $80\ !$ is

  1. $26$

  2. $77$

  3. $39$

  4. $38$


Correct Option: A
Explanation:

Exponent of $4$ is $80!$ is

$[\cfrac{80}{4}]+[\cfrac{80}{4^2}]+[\cfrac{80}{4^3}]=20+5+1=26$

If $^{n}P _{5}=9 \times ^{n-1}P _{4}$, then the value of $n$ is 

  1. $6$

  2. $8$

  3. $5$

  4. $9$


Correct Option: A

In the word $ENGINEERIGNG if all $Es$ are not together and $Ns$ come together then number of permutations is

  1. $\dfrac{9!}{2!2!}-\dfrac{7!}{2!2!}$

  2. $\dfrac{9!}{3!2!}-\dfrac{7!}{2!2!}$

  3. $\dfrac{9!}{3!2!2!}-\dfrac{7!}{2!2!2!}$

  4. $\dfrac{9!}{3!2!2!}-\dfrac{7!}{2!2!}$


Correct Option: A

There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P/Q has the value equal to :

  1. $^{ n }{ P } _{ 2^{ . } }\quad ^{ m }{ P } _{ { m }^{ . } }(n-2)!$

  2. $^{ m }{ P } _{ 2^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(n-2)!$

  3. $^{ m }{ P } _{ 2^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(n-2)!$

  4. none


Correct Option: A

If $3.^{n _{1}-n _{2}}P _{2}=^{n _{1}+n _{2}}P _{2}=90$, then the ordered $(n _{1},n _{2})$ is:

  1. $(8,2)$

  2. $(7,3)$

  3. $(16,8)$

  4. $(9,2)$


Correct Option: A

If $^{2n+1}P _{n-1}:^{2n-1}P _n=7:10$, then $^nP _3$ equals

  1. 60

  2. 24

  3. 120

  4. 6


Correct Option: A

There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P/Q has the value equal to :

  1. $^{ n }{ P } _{ { 2 }^{ . } }\quad ^{ m }{ P } _{ { m }^{ . } }(n-2)!$

  2. $^{ m }{ P } _{ { 2 }^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(n-2)!$

  3. $^{ n }{ P } _{ { 2 }^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(m-2)!$

  4. none


Correct Option: A

If $^{2n + 1}P _{n -1} : ^{2n - 1}P _n = 3 : 5$, then n is equal to 

  1. 4

  2. 6

  3. 8

  4. 3


Correct Option: A

Number of ways in which these $16$ players can be divided into equal groups, such that when the best player is selected from each group, ${P} _{6}$ is one among them, is $(k)\dfrac{12!}{{4!}^{3}}$. The value of $k$ is:

  1. $36$

  2. $24$

  3. $18$

  4. $20$


Correct Option: A