Tag: approximation
Questions Related to approximation
Using Newton-Raphson method, the cube root of $24$ is?
-
$2.884$
-
$3.256$
-
$5.231$
-
$4.526$
To find the cube root of $24$ using Newton - Raphson method,
we need to solve $f(x)=x^3-24$.
$ \Rightarrow f'(x)=3x^2$
Notice $3^3=27$
Therefore the cube root of $24$ is slightly less than $3$.
We have $f(x)=x^3-24, f'(x)=3x^2$
Let us start estimating the root $x$
Let the first estimation be $a=2.9$ (slightly less than 3)
Hence the subsequent estimates will be $b=a-\dfrac{f(a)}{f'(a)},c=b-\dfrac{f(b)}{f'(b)}$.
$f(a)=f(2.9)=(2.9)^3-24=0.389$ and $f'(a)=f'(2.9)=3(2.9)^2=25.23$
Therefore $b=2.9-\dfrac{0.389}{25.23}\approx 2.88458$
Now $c=2.88458-\dfrac{f(2.88458)}{f'(2.88458)}=2.88449$
Hence the cube root of $24$ is $2.884$
Using successive Bisection method find the second, third and fourth approximation of root of the equation $x^3-3x-5=0$ in the interval $(2,2.5)$
-
$ 2.375,2.135 \ & \ \ 2.2815$
-
$1.25,1.375 \ \ & \ \ 1.4375$
-
$4.23,3.214 \ \ & \ \ 2.135$
-
$2.4475,2.175 \ \ & \ \ 3.2815$
We have to find the second,third and fourth approximation of root of the equation $x^3-3x-5=0$ in the interval $(2,2.5)$ using successive Bisection method.
$\textbf{Iteration 1: k=0}$
$c _0=\dfrac{a _0+b _0}{2}=\dfrac{2+2.5}{2}=2.25$
Since $f(c _0)f(a _0)=f(2.25)f(2)>0$
Therefore set $a _1=2.25,b _1=b _0$
$\textbf{Iteration 2: k=1}$
$c _1=\dfrac{a _1+b _1}{2}=\dfrac{2.25+2.5}{2}=2.375$
Since $f(c _1)f(a _1)=f(2.375)f(2.25)<0$
Therefore set $a _2=a _1,b _2=c _1$
$\textbf{Iteration 3: k=2}$
$c _2=\dfrac{a _2+b _2}{2}=\dfrac{2.25+2.375}{2}=2.3125$
Since $f(c _2)f(a _2)=f(2.3125)f(2.25)<0$
Therefore set $a _3=a _2,b _3=c _2$
$\textbf{Iteration 4: k=3}$
$c _3=\dfrac{a _3+b _3}{2}=\dfrac{2.25+2.3125}{2}=2.28125$
Thus the second,third and fourth approximations are $2.375,2.3125,2.28125$ respectively.
The second and third approximation of $x^3-2x-5=0$ in the interval $(2,3)$ is?
-
$x _2 = 2.0946$ and $x _3 = 2.0947$
-
$x _2 = 1.636 $ and $x _3 = 2.98$
-
$x _2 = 4.0946 $ and $x _3 = 5.0947$
-
$x _2 = 2.946$ and $x _3 = 2.07$
Here, $x^3-2x-5=0$
The second and third approximation to the roots of $x^4-x-10=0$ in the interval $(1,2)$ is?
-
$x _2=2.856,x _3=3.8561$
-
$x _2=1.7756,x _3=1.061$
-
$x _2=1.87409, x _3=1.85587$
-
$x _2=7.856,x _3=1.8561$
Here, $x^4-x-10=0$
Using successive Bisection method find the second, third and fourth approximation of root of the given equation $x^3-x-4=0$ in the interval $(1,2)$
-
$2.75,13.875 , 1.8125$
-
$1.75,1.875 , 1.8125$
-
$1.725,1.5 , 1.8125$
-
$2.75,1.875 , 1.8125$
We have to find the second,third and fourth approximation of root of the
equation $x^3-x-4=0$ in the interval $(1,2)$ using successive
Bisection method.
$\textbf{Iteration 1: k=0}$
$c _0=\dfrac{a _0+b _0}{2}=\dfrac{1+2}{2}=1.5$
Since $f(c _0)f(a _0)=f(1.5)f(1)>0$
Therefore set $a _1=1.5,b _1=b _0$
$\textbf{Iteration 2: k=1}$
$c _1=\dfrac{a _1+b _1}{2}=\dfrac{1.5+2}{2}=1.75$
Since $f(c _1)f(a _1)=f(1.75)f(1.5)>0$
Therefore set $a _2=c _1,b _2=b _1$
$\textbf{Iteration 3: k=2}$
$c _2=\dfrac{a _2+b _2}{2}=\dfrac{1.75+2}{2}=1.875$
Since $f(c _2)f(a _2)=f(1.875)f(1.75)<0$
Therefore set $a _3=a _2,b _3=c _2$
$\textbf{Iteration 4: k=3}$
$c _3=\dfrac{a _3+b _3}{2}=\dfrac{1.75+1.875}{2}=1.8125$
Thus the second,third and fourth approximations are $1.75,1.875,1.8125$ respectively.
The second approximation of roots of $x^3-x-4=0$ in the interval $(1,2)$ by the method of false position is?
-
$1.78049$
-
$1.276$
-
$2.123$
-
$0.726$
Here, $f(x)=x^3-x-4=0$
Using successive Bisection method find the second, third and fourth approximation of root of the equation $x^3+x^2-1$ in the interval $(0,1)$
-
$0.75,1.875,0.8125$
-
$1.75,0.875,0.8125$
-
$0.75,0.875,0.8125$
-
$0.75,0.875,1.8125$
We have to find the second,third and fourth approximation of root of the
equation $x^3+x^2-1=0$ in the interval $(0,1)$ using successive
Bisection method.
$\textbf{Iteration 1: k=0}$
$c _0=\dfrac{a _0+b _0}{2}=\dfrac{0+1}{2}=0.5$
Since $f(c _0)f(a _0)=f(0.5)f(0)>0$
Therefore set $a _1=0.5,b _1=b _0$
$\textbf{Iteration 2: k=1}$
$c _1=\dfrac{a _1+b _1}{2}=\dfrac{0.5+1}{2}=0.75$
Since $f(c _1)f(a _1)=f(0.75)f(0.5)>0$
Therefore set $a _2=c _1,b _2=b _1$
$\textbf{Iteration 3: k=2}$
$c _2=\dfrac{a _2+b _2}{2}=\dfrac{0.75+1}{2}=0.875$
Since $f(c _2)f(a _2)=f(0.875)f(0.75)<0$
Therefore set $a _3=a _2,b _3=c _2$
$\textbf{Iteration 4: k=3}$
$c _3=\dfrac{a _3+b _3}{2}=\dfrac{0.75+0.875}{2}=0.8125$
Thus the second,third and fourth approximations are $0.75,0.875,0.8125$ respectively.
The third approximation of roots of $x^3-x^2-1=0$ in the interval $(1,2)$ by the method of false position is?
-
$2.430$
-
$1.340$
-
$1.430$
-
$1.230$
Here, $x^3-x^2-1=0$
The third approximation of roots of $x^3-x-1=0$ in the interval $(1,2)$ by the method of false position is?
-
$1.011$
-
$2.265$
-
$1.255$
-
$1.294$
Here, $x^3-x-1=0$
The value of $\cdot8642\ E\ 02 \div \cdot2562\ E02.$ is?
-
$\cdot12057\ E\ 09$
-
$\cdot33715\ E\ 01$
-
$\cdot33715\ E\ 05$
-
$\cdot33725\ E\ 01$
$0.8642:E:02 \div 0.2562 : E: 02 = ?$
The Scientific format displays a number in exponential notation,
replacing part of the number with $E+n$, where $E$ (stands for
exponent) multiplies the preceding number by $10$ to the $n^{th}$
power.
That is $1.23E+10$ can be written as $1.23 \times 10^{10}$
$0.8642:E:02 \div 0.2562 : E: 02 = \dfrac{0.8642 \times 10^2}{0.2562 \times 10^2} $
$=\dfrac{0.8642}{0.2562}$
$=3.371459$
$=0.3371459 \times 10^1$
$=0.33715 : E : 01$
$0.8642:E:02 \div 0.2562 : E: 02 =0.33715 : E : 01$