Tag: fractions and its related operations

Questions Related to fractions and its related operations

Which fractions are in order from the least to the greatest ? 

  1. $\displaystyle{\frac{1}{2}, \frac{2}{3}, \frac{2}{6}}$

  2. $\displaystyle{\frac{1}{2}, \frac{2}{6}, \frac{2}{3}}$

  3. $\displaystyle{\frac{2}{6}, \frac{2}{3}, \frac{1}{2}}$

  4. $\displaystyle{\frac{2}{6}, \frac{1}{2}, \frac{2}{3}}$


Correct Option: D
Explanation:
We are going to convert fraction into decimal.
$\Rightarrow$  $\dfrac{1}{2}=0.5$

$\Rightarrow$  $\dfrac{2}{3}=0.67$

$\Rightarrow$  $\dfrac{2}{6}=0.33$

Arranging above decimals in ascending order $=0.33,\,0.5,\,0.67$
Which can be written as $\dfrac{2}{6},\dfrac{1}{2},\dfrac{2}{3}$
$\therefore$   The fractions are in order from least to greatest are $\dfrac{2}{6},\dfrac{1}{2},\dfrac{2}{3}.$

The fraction equivalent to $\displaystyle \frac{1}{2}$ is

  1. $\displaystyle \frac{2}{4}$

  2. $\displaystyle \frac{3}{6}$

  3. $\displaystyle \frac{8}{16}$

  4. all the above


Correct Option: D
Explanation:

$\displaystyle \frac{1}{2}=\frac{1\times 2}{2\times 2}=\frac{2}{4}$


$\displaystyle \frac{1}{2}=\frac{1\times 3}{2\times 3}=\frac{3}{6}$

$\displaystyle \frac{1}{2}=\frac{1\times 8}{2\times 8}=\frac{8}{16}$

So, $\displaystyle \frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{8}{16}$

The fraction equivalent to $\displaystyle \frac{1}{2}$ is ____

  1. $\displaystyle \frac{3}{6}$

  2. $\displaystyle \frac{5}{10}$

  3. $\displaystyle \frac{9}{18}$

  4. all the above


Correct Option: D
Explanation:

Doing the simplest form of all these options..

$\dfrac{3}{6} = \dfrac{1}{2}$
$\dfrac{5}{10}= \dfrac{1}{2}$ 
$\dfrac{9}{18} = \dfrac{1}{2}$
hence option D is correct..

Which one is greater?
$\cfrac { 1 }{ 2 } $  $ of \, \cfrac { 4 }{ 7 } $ or $\cfrac { 2 }{ 3 } \, of $$\cfrac { 3 }{ 7 } $


Both are equal

  1. True

  2. False


Correct Option: A
Explanation:

$\dfrac{1}{2}\ \ \ of \ \ \dfrac{4}{7}$


$=\dfrac{1}{2}\ \ \ \times \ \ \dfrac{4}{7}$


$=\dfrac{2}{7}$

Similarly,

$\dfrac{2}{3}\ \ \ of \ \ \dfrac{3}{7}$

$=\dfrac{2}{3}\ \ \ \times \ \ \dfrac{3}{7}$

$=\dfrac{2}{7}$

So, both are equal

Which of the following orders are the fractions from the smallest to the largest?

  1. $\cfrac { 1 }{ 8 } ,\cfrac { 2 }{ 8 } ,\cfrac { 5 }{ 8 } $

  2. $\cfrac { 1 }{ 2 } ,\cfrac { 4 }{ 2 } ,\cfrac { 3 }{ 2 } $

  3. $\cfrac { 3 }{ 4 } ,\cfrac { 1 }{ 4 } ,\cfrac { 2 }{ 4 } $

  4. $\cfrac { 4 }{ 16 } ,\cfrac { 2 }{ 16 } ,\cfrac { 1 }{ 16 } $


Correct Option: A
Explanation:

In option A, denominator of all the fractions are same and numerator are in increasing order

So, option A is correct.

$\displaystyle\frac{15}{\square}$ is a fraction that lies between $\displaystyle\frac{1}{7}$ and $\displaystyle\frac{1}{8}$. What is the missing whole number in the box?

  1. $112$

  2. $56$

  3. $32$

  4. $65$


Correct Option: A
Explanation:

Let the missing number be $x$

$\dfrac{1}{7}<\dfrac{15}{x}<\dfrac{1}{8}$
Multiplying  numerator and denominator by 15
$\therefore$ $\dfrac{15}{105}<\dfrac{15}{x}<\dfrac{15}{120}$
So any number between $105$ and $120$ will be the value of $x$.
Hence the correct answer is option A

Which of the following statements is true?

  1. $\displaystyle\frac{5}{7} <\frac{7}{9} <\frac{9}{11} <\frac
    {11}{13}$

  2. $\displaystyle\frac{11}{13} < \frac{9}{11} < \frac{7}{9} < \frac{5}{7}$

  3. $\displaystyle\frac{5}{7} < \frac{11}{13} < \frac{7}{9} < \frac{9}{11}$

  4. $\displaystyle\frac{5}{7} < \frac{9}{11} <\frac{11}{13} < \frac{7}{9}$


Correct Option: A
Explanation:

$\dfrac{5}{7} , \dfrac{7}{9} , \dfrac{9}{11}, \dfrac{11}{13}$

making same deomenator,
$\dfrac{5}{7}= \dfrac{5\times 9 \times 11 \times 13}{7\times 9\times 11\times 13}$
$=\dfrac{6435}{9009}$ ...........................(1)


$\dfrac{7}{9}= \dfrac{7\times 7\times 11\times 13}{9\times 7\times 11\times 13}$

$=\dfrac{7007}{9009}$ ............................(2)

$\dfrac{9}{11}=\dfrac{9\times 7\times 9\times 13}{7\times 9\times 11\times 13}$

$=\dfrac{7371}{9009}$................................(3)

$\dfrac{11}{13}=\dfrac{11\times 7 \times 9 \times 11}{7 \times 9 \times 11 \times 13}$

$=\dfrac{7623}{9009}$.................................(4)

From equations (1), (2), (3) and (4);
$\dfrac{5}{7}$  <  $\dfrac{7}{9} $< $\dfrac{9}{11}$ < $\dfrac{11}{13}$

Which of the following fractions has the highest value $3/5$, $4/3$, $2/5$, $1/2$.

  1. $3/5$

  2. $4/3$

  3. $2/5$

  4. $1/2$


Correct Option: B
Explanation:
Given fractions, $\dfrac{3}{5},  \dfrac{4}{3},  \dfrac{2}{5},  \dfrac{1}{2}$

LCM of $2, 3$ and $5$ is $30 $

So, 
$\dfrac{3}{5} \times \dfrac{6}{6} = \dfrac{18}{30}$

$\dfrac{4}{3} \times \dfrac{10}{10} = \dfrac{40}{30}$

$\dfrac{2}{5} \times \dfrac{6}{6} = \dfrac{12}{30}$

$\dfrac{1}{2} \times \dfrac{15}{15} = \dfrac{15}{30}$

As in above fraction all denominators are same and $40$ is the biggest numerator. 

So, $\dfrac{4}{3}$ is the biggest fraction.

While comparing like fractions, fraction with greater numerator is:

  1. greater

  2. smaller

  3. equal

  4. can't compare


Correct Option: A
Explanation:

Fractions with the same denominators (bottom numbers) are called like fractions.

so, while comparing like fractions, the fraction with greater number/numerator will be greater.

If $ \dfrac {1}{a} < \dfrac {1}{b} ,$ then :

  1. $|a| > |b| $

  2. $ a < b$

  3. $ a > b $

  4. None of these


Correct Option: C
Explanation:

$\begin{array}{l} We\, have \ \frac { 1 }{ a } <\frac { 1 }{ b }  \ by\, reciprocal\, both\, side\, we\; get \ \frac { a }{ 1 } >\frac { b }{ 1 }  \ \therefore a>b \ Hence,\, the\, option\, C\, is\, the\, correct\, answer. \end{array}$