Tag: maxima and minima
Questions Related to maxima and minima
If $f(x)=A\sin \left(\dfrac{\pi x}{2}\right)+B, f'\left(\dfrac{1}{2}\right)=\sqrt{2}$ and $\displaystyle\int^1 _0f(x)dx=\dfrac{2A}{\pi}$, then the constant A and B are, respectively.
If $F(x)=2x^3-21\,x^2+36x-20$, then
Find out the largest term of the sequence $\displaystyle \frac{1}{503},\displaystyle \frac{4}{524}, \displaystyle \frac{9}{581}, \displaystyle \frac{16} {692},....$
Let $f(x)=\begin{cases} \left| x-1 \right| +a\ if\ x\le 1 \ 2x+3 \ \ \ \ if \ x>1 \end{cases}$
If $f(x)$ has a local minimum at $x=1$ then
If $\displaystyle xy=a^{2}$ and $\displaystyle S=b^{2}x+c^{2}y$ where a,b and c are constants then the minimum value of S is
If $\displaystyle \theta +\phi =\frac{\pi }{3}$ then $\displaystyle \sin \theta \cdot\sin \phi$ has a maximum value at $\displaystyle \theta$ =
The sum of two nonzero numbers is $8$. The minimum value of the sum of their reciprocals is
$\displaystyle \log _{10}x + \log _{10}y \geq 2$, then the smallest possible value of $\displaystyle x + y$ is
Let $f(x)$ be a non-zero polynomial of degree $4$. Extreme points of $f(x)$ are $0, -1, 1$. If $f(k)=f(0)$ then?
Divide 10 into two parts such that the sum of twice of one part and square of the other is a minimum.