Tag: second derivative test

Questions Related to second derivative test

If $f(x)=A\sin \left(\dfrac{\pi x}{2}\right)+B, f'\left(\dfrac{1}{2}\right)=\sqrt{2}$ and $\displaystyle\int^1 _0f(x)dx=\dfrac{2A}{\pi}$, then the constant A and B are, respectively.

  1. $\pi/2$ and $\pi/2$

  2. $4/\pi$ and $3/\pi$

  3. $4/\pi$ and $-4/\pi$

  4. $4/\pi$ and $0$


Correct Option: A

If $F(x)=2x^3-21\,x^2+36x-20$, then 

  1. f has maxima at x=1

  2. f has minima at x=1

  3. f has maximum value -128

  4. f has minimum value -3


Correct Option: A
Explanation:

Consider given the function,

$F\left( x \right)=2{{x}^{3}}-21{{x}^{2}}+36x-20$      ……(1)

Differentiate with respect to x,

${{F}^{'}}\left( x \right)=6{{x}^{2}}-42x+36$          ……..(2)


For maxima and minima,

$ F\left( x \right)=0 $

$ 6{{x}^{2}}-42x+36=0 $

$ {{x}^{2}}-7x+6=0 $

$ {{x}^{2}}-6x-x+6=0 $

$ x\left( x-6 \right)-1\left( x-6 \right)=0 $

$ \left( x-6 \right)\left( x-1 \right)=0 $

$ x=1,6 $


Differentiate equation 2nd with respect to x,

${{F}^{''}}\left( x \right)=12x-42$

At $x=1\Rightarrow {{F}^{''}}\left( x \right)<0$

Hence, F(x) Is maximum.


At $x=6\Rightarrow F\left( x \right)>0$

Hence, function F(x) is minimum.

 

Hence, this is the answer.

Find out the largest term of the sequence  $\displaystyle \frac{1}{503},\displaystyle \frac{4}{524}, \displaystyle \frac{9}{581}, \displaystyle \frac{16} {692},....$

  1. $\displaystyle \frac{25}{875}$

  2. $\displaystyle \frac{36}{1148}$

  3. $\displaystyle \frac{49}{1529}$

  4. $\displaystyle \frac{64}{2036}$


Correct Option: C
Explanation:

General term can be written as
$T _{n}=\displaystyle \frac{n^{2}}{500+3n^{3}}$
then, $\displaystyle \frac{dT _{n}}{dn}=\displaystyle \frac{n(1000-3n^{3})}{(500+3n^{3})^{2}}$
For max or min of $T _{n}$,
$\displaystyle \frac{dT _{n}}{dn}=0$
$\therefore n=\left ( \displaystyle \frac{1000}{3} \right )^{1/3}=6.933\approx7$

Hence, $T _{7}$ is the largest term. So largest term in the given sequence is $\displaystyle \frac{49}{1529}$

Let $f(x)=\begin{cases} \left| x-1 \right| +a\ if\ x\le 1 \ 2x+3 \ \ \ \ if \ x>1 \end{cases}$ 
If $f(x)$ has a local minimum at $x=1$ then 

  1. $a>5$

  2. $0$

  3. $a\le 5$

  4. $a=5$


Correct Option: C

If $\displaystyle xy=a^{2}$ and $\displaystyle S=b^{2}x+c^{2}y$ where a,b and c are constants then the minimum value of S is 

  1. $abc$

  2. $\displaystyle bc\sqrt{a}$

  3. $2abc$

  4. none of these


Correct Option: C
Explanation:

Given $x y = a^2$ and $S = b^2x + c^2y$
$\Rightarrow S = b^2 x + c^2a^2/x$
$\Rightarrow \dfrac{dS}{dx} = b^2 - c^2a^2/x^2$
For maximum or minimum value of $S$
$ \dfrac{dS}{dx} = 0 = b^2 - c^2a^2/x^2 \Rightarrow x =\pm  ac/b$
Now $\dfrac{dS}{dx} = 2 c^2a^2/x^3$
Clearly at $x =  ac/b$,  $\dfrac{dS}{dx} = 2 b^3/ac > 0 $ (Assuming that $ b^3/ac>0$)
Hence minimum value of $S$ is $= b^2(ac/b)+c^2(b/ac)= 2abc$

If $\displaystyle \theta +\phi =\frac{\pi }{3}$ then $\displaystyle  \sin \theta \cdot\sin \phi$ has a maximum value at $\displaystyle \theta$ =

  1. $\displaystyle \dfrac{\pi }{6}$

  2. $\displaystyle \dfrac{2\pi }{3}$

  3. $\displaystyle \dfrac{\pi }{4}$

  4. none of these


Correct Option: A
Explanation:

Let $y = \sin\theta.\sin\phi = \sin\theta.\sin(\dfrac{\pi}{3}-\theta)$
For maximum value of $y$ 
$\dfrac{dy}{dx} = 0 = \cos\theta.\sin(\dfrac{\pi}{3}-\theta) - \sin\theta.\cos(\dfrac{\pi}{3}-\theta) = \sin(2\theta -\dfrac{\pi}{3})$
$\Rightarrow \theta = \dfrac{\pi}{6}$

The sum of two nonzero numbers is $8$. The minimum value of the sum of their reciprocals is

  1. $\displaystyle \frac{1}{4}$

  2. $\displaystyle \frac{1}{2}$

  3. $\displaystyle \frac{1}{8}$

  4. none of these


Correct Option: B
Explanation:

Let $x$ and $y$ be two numbers 
$\Rightarrow x+y = 8$
Assume $z$ be be sum of their inverse
$z = 1/x+1/y =\dfrac{x+y}{xy} = \dfrac{8}{xy} = \dfrac{8}{x(8-x)}$
For minimum value of $z $
$\dfrac{dz}{dx} = 0 =\dfrac{16(4-x)}{(x(8-x))^2}\Rightarrow x = 4$
Hence minimum value of $z$ is $=1/4+1/4 = \dfrac{1}{2}$ 

$\displaystyle \log _{10}x + \log _{10}y \geq 2$, then the smallest possible value of $\displaystyle x + y$ is

  1. $\displaystyle 10$

  2. $\displaystyle 30$

  3. $\displaystyle 20$

  4. None of these


Correct Option: C
Explanation:

${log} _{10}x+{log} _{10} y=$ $log _{10}(xy)\geq2$, 
Thus, $xy\geq100$
 Given the product of two numbers ,addition of two number is smallest when they are equal.
$ x^2\geq100$
Therefore, smallest value of $x+y =20$
Hence, option 'C' is correct.

Let $f(x)$ be a non-zero polynomial of degree $4$. Extreme points of $f(x)$ are $0, -1, 1$. If $f(k)=f(0)$ then?

  1. k has one rational & two irrational roots

  2. k has four rational roots

  3. k has four irrational roots

  4. k has three irrational roots


Correct Option: A
Explanation:

Let $f'(x)=\lambda x(x^2-1)\Rightarrow f(x)=\lambda\left(\dfrac{x^4}{4}-\dfrac{x^2}{2}\right)+C$
Now $f(0)=f(k)\Rightarrow \dfrac{k^4}{4}-\dfrac{k^2}{2}=0\Rightarrow k=0$ or $\pm \sqrt{2}$
Hence $(1)$.

Divide 10 into two parts such that the sum of twice of one part and square of the other is a minimum.

  1. 6,4

  2. 7,3

  3. 8,2

  4. 9, 1


Correct Option: D
Explanation:

Let one part be $x$

Therefore another part will be $10-x$.
Hence application of the condition gives us 
$f(x)=x^{2}+2(10-x)$
$f'(x)=2x-2$
$=0$
$x=1$
Hence the parts are $1,9$