Tag: application of derivatives - iii

Questions Related to application of derivatives - iii

If the sum of two +ve numbers is 18, then the maximum value of their product is

  1. 81

  2. 85

  3. 72

  4. 80


Correct Option: A
Explanation:

$x+y=18$
$Product =xy$
$\dfrac {d(Product)}{dx}=(18-x)-x$
$0=18-2x$
$x=9$
$y=9$
$Product = 81$

Observe the following lists

List-I List-II
(A) Maximum value of  $xy$ subject to  ${x}+{y}=7$ is 1) $72$
(B) If  $l^{2} + m^{2} = 1$ , then the maximum value of $l + m$ is 2) $1$
(C) If $x +y = 12$, then the minimum Value of $x^{2}  +y^{2}$   is 3) $\sqrt{2}$
(D) Minimum value $x^{2} - 8x +17$ is  4) $\displaystyle \frac{49}{4}$
5) $0$
  1. A - 4, B -3, C -1, D -2.

  2. A - 4, B -3, C -2, D -1.

  3. A - 2, B -3, C -5, D -4.

  4. A - 2, B -3, C -1, D -4.


Correct Option: A
Explanation:

(A) use A.M. & G.M.
$\displaystyle \frac {x+y}{2}\geq (xy)^{\frac {1}{2}}$
$\displaystyle (\dfrac {7}{2})\geq (xy)^{\frac {1}{2}}$
$(xy)\leq(\dfrac {7}{2})^2$
(B) $y=l+\sqrt {1-l^2}$

$\displaystyle \frac {dy}{dl}=1-\frac {l}{\sqrt {1-l^2}}$

$\displaystyle \frac {dy}{dl}=0$ when $\displaystyle l=\frac {1}{\sqrt 2}$
So $\displaystyle m=\frac {1}{\sqrt 2}$
$\Rightarrow l=\displaystyle \frac{1}{\sqrt{2}}$

$\Rightarrow l+m=\sqrt{2}$

(C) $s=x^2+(12-x)^2$
$\displaystyle \frac {ds}{dx}=2x-2(12-x)$
$\displaystyle \frac {ds}{dx}=0$ when $x=6$ $y=6$
$s=36+36=72$
(D) $f'(x)=2x-8$
$f'(x)=0$ at $x=y$
$f(y)=1$

lf $\mathrm{x}+\mathrm{y}=28$ then the maximum value of $\mathrm{x}^{3}\mathrm{y}^{4}$ is

  1. $4^{3}. 24^{4}$

  2. $12^{3}.16^{4}$

  3. $4321$

  4. $1234$


Correct Option: B
Explanation:

If $x+y=k$ then maximum value of $x^{m}y^{n}$ is at $\displaystyle x=\frac{km}{m+n}, y=\frac{km}{m+n}$ where $x,y>0$ and $m,n \ge{1} $
Here $k=28, m=3,n=4$
So,$x=12, y=16$
Hence maximum value is $12^3.16^4$

lf $2\mathrm{x}+\mathrm{y}=5$ then the maximum value of $\mathrm{x}^{2}+3\mathrm{x}\mathrm{y}+\mathrm{y}^{2}$ is

  1. $\displaystyle \frac{125}{4}$

  2. $\displaystyle \frac{4}{125}$

  3. $\displaystyle \frac{625}{4}$

  4. $\displaystyle \frac{4}{625}$


Correct Option: A
Explanation:

$2x+y=5$
$\Rightarrow y=5-2x$
$f(x)=x^2+3x(5-2x)+(5-2x)^2$
$f(x)=-x^2-5x+25$
$f'(x)=-2x-5$
For maxima or minima,
$f'(x)=0$
$\Rightarrow x=-\frac{5}{2}$
$f''(x)=-2$
$f''(-\frac{5}{2})=-2<0$
So, f(x) has a maximum at $x=-\frac{5}{2}$
$\displaystyle f(-\frac{5}{2})=\frac{125}{4}$

lf x, y are two real numbers such that $x^{2}+y^{2}=1$, then the maximum value of x+y is

  1. $\sqrt{2}$

  2. $\sqrt{5}$

  3. 2

  4. 6


Correct Option: A
Explanation:

Let $x=cos{\theta}$ and $y=sin{\theta}$
Then, $f(\theta)= cos{\theta}+sin{\theta}$
$f'(\theta)=-sin{\theta}+cos{\theta}$
For maxima or minima,
$f'(\theta)=0$
$\Rightarrow \theta =\frac{\pi}{4}$
$f''(\theta)=-(cos{\theta}+sin{\theta})$
$\Rightarrow f''(\frac{\pi}{4})<0$
Hence, f has a maximum value at $\theta =\frac{\pi}{4}$
$\displaystyle f(\frac{\pi}{4})=\sqrt{2}$


if xy(y-x) = 16 then y has a minimum value when x=

  1. 1

  2. 3

  3. 2

  4. 4


Correct Option: D
Explanation:

$xy(y-x)=16$
$xy^2-x^2y=16$
$y^2-xy-\dfrac {16}{x}=0$
$(y-\dfrac {x}{2})^2-\dfrac {x^2}{4}-\dfrac {16}{x}=0$
$y=\dfrac {x}{2}\pm \sqrt{\dfrac {x^2}{4}+\dfrac {16}{x}}$
$y'=\dfrac {1}{2}\pm \dfrac {1}{2}(\dfrac {\dfrac {2x}{4}-\dfrac {16}{x^2}}{\sqrt {\dfrac {x^2}{4}+\dfrac {16}{x}}})$
$-1=\pm (\dfrac {\dfrac {x}{2}-\dfrac {16}{x^2}}{\sqrt {\dfrac {x^2}{4}+\dfrac {16}{x}}})$
$\dfrac {16}{x}=\dfrac {256}{x^4}-\dfrac {16}{x}$
$x^3=8$
$x=2$
& $y=4$

The sum of two +ve numbers is 100. If the product of the square of one number and the cube of the other is maximum then the numbers are

  1. 60, 40

  2. 20, 80

  3. 80, 20

  4. 40, 60


Correct Option: D
Explanation:

$x+y=100$
$f(x)=x^2(100-x)^3$
$f'(x)=2x(100-x)^3-3(100-x)^2x^2$
$3x=2(100-x)$
$x=40$  $y=60$

The positive number x that exceeds its square by largest amount is

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle \frac{1}{3}$

  3. $\displaystyle \frac{1}{4}$

  4. 1


Correct Option: A
Explanation:

$f(x)=x-x^2$
$f'(x)=1-2x$
$x=\dfrac {1}{2}$ when $f'(x)=0$

$f(x)=2{x}^{3}-9{x}^{2}+12x+4$ is decreasing when

  1. $-\infty< x<1$ and $2< \infty< \infty$

  2. $-1< x< 2$

  3. $1< x< 2$

  4. $0< x< 2$


Correct Option: C
Explanation:

$f'(x)=6{x}^{2}-15x+12$
$=6({x}^{2}-3x+2)$
$=6(x-1)(x-2)$
$f'(x)< 0$ when $x$ lies between $1$ and $2$
$\therefore$ $1< x< 2$
$\therefore$ (3) is correct

According to a certain estimate, the depth N(t), in centimeters, of the water in a certain tank at $t$ hours past $2:00$ in the morning is given by $\displaystyle N\left( t \right) =-20{ \left( t-5 \right)  }^{ 2 }+500for\quad 0\le t\le 10$ . According to this estimate, at what time in the morning does the depth of the water in the tank reach its maximum?

  1. $5:30$

  2. $7:00$

  3. $7:30$

  4. $8:00$

  5. $9:00$


Correct Option: B
Explanation:
Given
$N(t)=-20{ (t-5) }^{ 2 }+500\quad 0\le t\le 10$
where $N(t)$ is the depth in cm in time t for maximum depth,
$\cfrac { dN }{ dt } =-20\times 2\left( t-5 \right) =0$
$t=5$
$\cfrac { { d }^{ 2 }N }{ d{ t }^{ 2 } } =-40$ (negative)
Thus at $t=5$ hours , depth will be maximum.
The water tank starts filling at $2:00$ in morning.
Therefore maximum depth$=2:00+5$ hours
$=7:00$am (hours)