Tag: parametric equations
Questions Related to parametric equations
If line $PQ$, whose equation is $y = 2x + k,$ is a normal to the parabola whose vertex is $(-2,3)$ and the axis parallel to the $x$-axis with latus rectum equal to $2$, then the possible value of k is
If $y = \dfrac { 1 } { 1 + x ^ { n - m } + x ^ { p - m } } + \dfrac { 1 } { 1 + x ^ { m - n } + x ^ { p - n } } + \dfrac { 1 } { 1 + x ^ { m - p } + x ^ { n - p } }$ then $\dfrac { d y } { d x }$ at $x = e ^ { m ^ { n p } }$ is equal to
Let f(x) be a differentiable function and $f\left( \alpha \right) = f\left( \beta \right) = 0\,\left( {\alpha < \beta } \right)$, then in the interval $\left( {\alpha ,\beta } \right)$
If $y = \log \left( \frac { 1 + x } { 1 - x } \right) ^ { 1 / 4 } - \frac { 1 } { 2 } \tan ^ { - 1 } x ,$ then $\frac { d y } { d x } =$
If f'$\left( x \right) =\sqrt { { 2x }^{ 2 }-1 } $ and y=f$\left( { x }^{ 2 } \right) $ then $\dfrac { dy }{ dx } $ at x=1 is
A differentiable function function $y = h(x)$ satisfies $\displaystyle \overset{x}{\underset{0}{\int}} (x - t + 1)h(t)dt = x^4 + x^2; \forall x \ge 0$, then value of $h(0) + h'(0)$ is equal to
Area of the triangle formed by the lines $x-y=0, x+y=0$ and ant tangent to the hyparabola $x^{2}-y^{2}=a^{2}$ is
If $x = \exp \left{ \tan ^ { - 1 } \left( \frac { y - x ^ { 2 } } { x ^ { 2 } } \right) \right}$ then $\frac { d y } { d x } =$
Consider the function $f(x)=\mathrm{s}\mathrm{g}\mathrm{n} x$ and $g(x)=x\left ( 1-x^{2} \right )$. Which of the following does NOT hold good?
The set of all points of differentiability of the function $\displaystyle f(x) = \dfrac{\sqrt{x + 1} 1}{\sqrt{x}}$ for $x$ and $f(0)$ = 0 is