Tag: scalar product
Questions Related to scalar product
Consider the following statements A and B given below and identify the correct answer:
A) lf $\vec{\mathrm{A}}$ is a vector, then the magnitude of the vector is given by $\sqrt{\vec{A}\times \vec{A}}$
B) lf $\vec{a}=m\vec{b}$ where 'm' is a scalar, the value of 'm' is equal to $\frac{\vec{a} \cdot \vec{b}}{b^{2}}$
lf vectors $\vec{\mathrm{A}}$ and $\vec{\mathrm{B}}$ are given by $\vec{\mathrm{A}}=5\hat{\mathrm{i}}+6\hat{\mathrm{j}}+3\hat{\mathrm{k}}$ and $\vec{\mathrm{B}}=6\hat{\mathrm{i}}-2\hat{\mathrm{j}}-6\hat{\mathrm{k}}$ then which of the following is/are correct?
$a)\vec{\mathrm{A}}$ and $\vec{\mathrm{B}}$ are mutually perpendicular
$\mathrm{b})$ Product of $\vec{\mathrm{A}}\times\vec{\mathrm{B}}$ is same as $\vec{\mathrm{B}}\times\vec{\mathrm{A}}$
$\mathrm{c})$ The magnitude of $\vec{\mathrm{A}}$ and $\vec{\mathrm{B}}$ are equal
$\mathrm{d})$ The magnitude of $\vec{\mathrm{A}}.\vec{\mathrm{B}}$ is zero
lf $\vec{a}=2\hat{i}+6n\hat{j}+m\hat{k}$ and $\vec{b}=\hat{i}+18\hat{j}+3\hat{k}$ are parallel to each other then the values of $m,n$ are:
$\vec{A}$ and $\vec{B}$ are two vectors in a plane at an angle of $60^{0}$ with each other. $\vec{C}$ is another vector perpendicular to the plane containing vectors $\vec{A}$ and $\vec{B}$. Which of the following relations is possible?
If $\vec{A} = 2\hat{i} + \hat{j}$ and $\vec{B} = \hat{i} - \hat{j}$, sketch vectors graphically and find the component of $\vec{A}$ along $\vec{B}$ and perpendicular to $\vec{B}$.
Given $\vec{A} = 2\hat{i} + p\hat{j} + q\hat{k}$ and $\vec{B}=5\hat{i}+7\hat{j} + 3\hat{k}$. If $\vec{A}|| \vec{B}$, then the values of $p$ and $q$ are, respectively,
If the two vectors $\vec{A} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k}$ and $\vec{B} = \hat{i} + 2 \hat{j} - n \hat{k}$ are perpendicular, then the value of $n$ is:-
Given $\overline { a } + \overline { b } + \vec { c } + \overline { d } = 0$ , which of the following statements is/are not a correct statement?
- ← Previous
- 1
- 2
- 3
- 4
- 5
- Next →