Tag: mathematical methods
Questions Related to mathematical methods
If $\overrightarrow a + b + \overrightarrow c = 0$ The angle between $\overrightarrow a \,\,and\,\,\overrightarrow b \,,b\,and\,\overrightarrow c \,and\,{150^0}\,\,and\,\,{120^0}$ respectively.The the magnitude of vectors $\overrightarrow a ,\overrightarrow b \,\,and\,\,\overrightarrow c $ are in ratio of .
If $\vec { A } = 4 \vec { i } + 5 \vec { j } - 6 \vec { k }$ and $\vec { B } = 2 \vec { i } - 3 \vec { j } + 4 \vec { k }$ then $( \vec { A } + \vec { B } ) \cdot (\vec { A } - \vec { B } )$ is
If the two given vectors $ 2 \hat i + 3 \hat j + 4 \hat k $ and $ 6 \hat i + \alpha \hat j + \beta \hat k $ are parallel , the value of $ \alpha $ and $ \beta $ will be
If $\overrightarrow{A}=4\widehat{i}+6\widehat{j} $ and $\overrightarrow{B}=2\widehat{i}+3\widehat{j}$ .Then :
If $ \overrightarrow{A} \times \overrightarrow{B}=0,$ $ \overrightarrow{B} \times \overrightarrow{C}=0, $then $ \overrightarrow{A} \times \overrightarrow{C}= $
Consider a vector $F=4\hat{i}-3\hat{j} $. Another vector which is perpendicular to $\vec F$ is:
Show that the vector is parallel to a vector $\displaystyle \vec{A}=\hat{i}-\hat{j}+2\hat{k}$ is parallel to a vector $\displaystyle \vec{B}=3\hat{i}-3\hat{j}+6\hat{k}.$
If $\vec{a}=x _1\hat {i}+y _1\hat {j}$ and $\vec{b}=x _2\hat {i}+y _2\hat {j}$. The condition that would make $\vec{a}$ and $\vec{b}$ parallel to each other is........... .
A vector $\bar{P} _{1}$ is along the positive x- axis. If its cross product with another vector $\bar{P} _{2}$ is zero, then $\bar{P} _{2}$ could be:
If three vectors satisfy the relation $ \overrightarrow A . \overrightarrow B = 0 $ and $ \overrightarrow A . \overrightarrow C = 0 $ , then $ \overrightarrow A $ can be parallel to