Tag: arithmetic sequences

Questions Related to arithmetic sequences

The sum of infinity terms of the series $\dfrac{1}{1+1^2+1^4} + \dfrac{1}{1+2^2+2^4} + \dfrac{3}{1+3^2+3^4}+....\infty$ is 

  1. $\dfrac{1}{2}$

  2. $\dfrac{1}{3}$

  3. $1$

  4. $\dfrac{1}{4}$


Correct Option: A

The sum of  $10$  terms of the series  $\left( x + \dfrac { 1 } { x } \right) ^ { 2 } + \left( x ^ { 2 } + \dfrac { 1 } { x ^ { 2 } } \right) ^ { 2 } + \left( x ^ { 3 } + \dfrac { 1 } { x ^ { 3 } } \right) ^ { 2 } + \ldots .$  is

  1. $\left( \dfrac { x ^ { 20 } - 1 } { x ^ { 2 } - 1 } \right) \left( \dfrac { x ^ { 22 } + 1 } { x ^ { 20 } } \right) + 20$

  2. $\left( \dfrac { x ^ { 18 } - 1 } { x ^ { 2 } - 1 } \right) \left( \dfrac { x ^ { 11 } + 1 } { x ^ { 9 } } \right) + 20$

  3. $\left( \dfrac { x ^ { 18 } - 1 } { x ^ { 2 } - 1 } \right) \left( \dfrac { x ^ { 11 } - 1 } { x ^ { 9 } } \right) + 20$

  4. None of these


Correct Option: A

Sum of the series $S=1^{2}-2^{2}+3^{2}-4^{2}+......-2008^{2}+2009^{2}$ is 

  1. $2019045$

  2. $1005004$

  3. $2000506$

  4. $None of these$`


Correct Option: A

If $(1^{2}+2^{2}+3^{3}+.....12^{2})=650$, then the value of $(2^{2}+4^{2}+6^{2}+.......+24^{2})$ is 

  1. $1300$

  2. $2600$

  3. $2500$

  4. $42250$


Correct Option: A

the sum of the first n terms of the series ${ 1 }^{ 2 }+{ 2.2 }^{ 2 }+{ 3 }^{ 2 }+{ 2.4 }^{ 2 }+{ 5 }^{ 2 }+{ 2.6 }^{ 2 }....is\frac { n(n+1)^{ 2 } }{ 2 } $ when n is even.wheen n is odd the sum is

  1. $\frac { 3n(n+1) }{ 2 } $

  2. $\frac { { n }^{ 2 }(n+1) }{ 2 } $

  3. $\frac { { n }(n+1)^{ 2 } }{ 4 } $

  4. $\left[ \frac { { n }(n+1) }{ 4 } \right] ^{ 2 }$


Correct Option: A

If the sum of first n positive integers is $ \frac{1}{5}  $ times the sum of their squares, then n equals

  1. 5

  2. 6

  3. 7

  4. 8


Correct Option: A

Let $\begin{bmatrix} n \ k\end{bmatrix}$ represents the combination of 'n' things taken 'k' at a time, then the value of the sum $\begin{bmatrix} 99\ 97\end{bmatrix}+\begin{bmatrix} 98\ 96\end{bmatrix}+\begin{bmatrix} 97\ 95\end{bmatrix}+...+\begin{bmatrix} 3\ 1\end{bmatrix}+\begin{bmatrix} 2\ 0\end{bmatrix}$ equals?

  1. $\begin{bmatrix} 99\ 97\end{bmatrix}$

  2. $\begin{bmatrix} 100\ 98\end{bmatrix}$

  3. $\begin{bmatrix} 99\ 98\end{bmatrix}$

  4. $\begin{bmatrix} 100\ 97\end{bmatrix}$


Correct Option: A

$\frac { 3 }{ 6 } +\frac { 3.5 }{ 6.9 } +\frac { 3.5.7 }{ 6.9.12 } +...\infty =$

  1. $3\sqrt { 3 } $

  2. $3\sqrt { 3 } -\frac { 4 }{ 3 } $

  3. $3\sqrt { 3 } -4$

  4. $2\sqrt { 3 } $


Correct Option: A

Sum of the series
$P=\dfrac{1}{2\sqrt{1}+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}$ is

  1. $1/10$

  2. $3/10$

  3. $9/10$

  4. $1/2$


Correct Option: A

The sum of series $\sec^{-1}\sqrt {2}+\sec^{-1}\dfrac {\sqrt {10}}{3}+\sec^{-1}\dfrac {\sqrt {50}}{7}+...+\sec^{-1}\sqrt {\dfrac {(n^{2}+1)(n^{2}-2n+2)}{(n^{2}-n+1)^{2}}}$ 

  1. $\tan^{-1}1$

  2. $\tan^{-1}n$

  3. $\tan^{-1}(n+1)$

  4. $\tan^{-1}(n-1)$


Correct Option: A