Tag: basic mathematical concepts

Questions Related to basic mathematical concepts

What is the value of $[\log _{10} (5\log _{10} 100)]^{2}$?

  1. $4$

  2. $3$

  3. $2$

  4. $1$


Correct Option: D
Explanation:

The value of $[\log _{10}(5\log _{10} 100)]^{2}$ is
$=[\log _{10}(5\log _{10}10^2)]^2$

$=[\log _{10}(10\log _{10}10)]^2$     .....As $\log a^m=m\log a$
$=[\log _{10}(10\times 1)]^2$     ....As $\log _aa=1$
$=[\log _{10}10]^2$
$=[1]^2=1$

Find the characteristic of $\log 7.93$

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A
Explanation:

From Logarithmic table,

$\log7.93=0.89927$
Here, Characteristics$=0$
Hence, A is the correct option.

Find the characteristic of $\log 277.9301$

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: C
Explanation:

From logarithmic table,

$\log 277.9301=2.4439$
Here, Characteristics$=2$
Hence, C is the correct option.

Find the characteristic of $\log 27.93$

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: B
Explanation:

From log table,

$\log27.93=1.4460$
Here, Characteristics$=1$ and Mantisa$=0.4460$
Hence, B is the correct option.

Find the mantissa of $\log 2.125$

  1. $1.3273$

  2. $2.3273$

  3. $0.3273$

  4. $32.2321$


Correct Option: C
Explanation:

From Logarithmic table,

$\log2.125=0.3237$
Here, Characteristics$=0,$ Mantissa$=0.3237$
Hence, C is the correct option.

The value of $x$ which satisfy $log(x+1) = 2logx$ is 

  1. $1$

  2. $\dfrac{\sqrt{5}-1}{2}$

  3. $\dfrac{\sqrt{5}+1}{2}$

  4. $2$


Correct Option: B,C
Explanation:

$\log(x+1)=2\log x$


$\Rightarrow \log (x+1)=\log x^2$

$\Rightarrow x^2-x-1=0$

$\Rightarrow x=\cfrac{+1\pm \sqrt{1+4}}{2}=\cfrac{1\pm \sqrt{5}}{2}$

$\Rightarrow x= \left(\cfrac{1+\sqrt{5}}{2}\right),\left(\cfrac{1-\sqrt{5}}{2}\right)$

The value of $x$ satisfying the equation $g^{log _3 (log _2 x)} = log _2 x - (log _2 x)^2 + 1$ is 

  1. $0$

  2. $1$

  3. $2$

  4. None


Correct Option: C
Explanation:

Here, $g^{\log _{3}(\log _{2}x)}$ is an exponential function and $\log _{2}{x}-\left(\log _{2}{x}\right)^{2}+1$ is a quadratic with imaginary roots.

The two can be equal when both side become $0,1$. Since, right hand side can become zero at imaginary point. We, only consider, then the two side become $1$.
$\log _{2}{x}-\left(\log _{2}{x}\right)^{2}+1=1$
$\Rightarrow \left(\log _{2}{x}\right)^{2}-\left(\log _{2}{x}\right)=0$
$\Rightarrow \left(\log _{2}{x}\right)\left(\log _{2}{x}-1\right)=0$
$\Rightarrow \log _{2}{x}=0$ and $\log _{2}{x}=1$
$\Rightarrow x=1,2$
But $x\neq 1$ as in $g^{\log _{3}(\log _{2}x)}$ it become invalid hence, $x=2$ satisfy the relation.

If $2y = log(12-5x-3x^2)$ takes all real values then $x$ belongs to 

  1. $(-3, 5/3)$

  2. $(-3, 3)$

  3. $(-3, 4/3)$

  4. None


Correct Option: C
Explanation:

$2y=\log\left(12-5x-3x^2\right)$

$(12-5x-3x^2)>0$
$3x^2+5x-12<0$
$3x^2+9x-4x-12<0$
$3x\left(x+3\right)-4\left(x+3\right)<0$
$\left(x+3\right)\left(3x-4\right)<0$
$x\epsilon \left(-3,{4/3}\right)$

Evaluate the expression by using logarithm tables: $ \dfrac{(17.42)^{2/{3}}\times 18.42}{\sqrt{126.37}}$

  1. $11.01$

  2. $12.01$

  3. $13.01$

  4. $14.01$


Correct Option: A
Explanation:

Let $x= \dfrac{(17.42)^{2/{3}}\times 18.42}{\sqrt{126.37}}$
Taking logarithm on both sides,
$ \log { x } =\log { (17.42)^{ 2/{ 3 } } } +\log { 18.42 } -\log { \sqrt { 126.37 }  } $

$\log { x } =\dfrac { 2 }{ 3 } \log { 17.42 } +\log { 18.42 } -\dfrac { 1 }{ 2 } \log { (126.37) } $

$ \log { x } =\dfrac { 2 }{ 3 } \log { (1.742\times 10) } +\log { (1.842\times 10) } -\dfrac { 1 }{ 2 } \log { (1.264\times { 10 }^{ 2 }) } $

$ \log { x } =\dfrac { 2 }{ 3 } { (1.2410) } + { 1.2653 } -\dfrac { 1 }{ 2 } { (2.1018) } $

$\log { x } =0.8273+1.2653-1.0509$

$\log { x } =1.0417$
$\Rightarrow x= \text{antilog }(1.0417)$
$\Rightarrow x = 11.01$

Let $a = \log 3\log _32$. An integer k satisfying  $1< 2^{(-k+3^{-a})} < 2,$  must be less than ____.

  1. $1.25766$

  2. $2.256$

  3. $3$

  4. $1$


Correct Option: A