Tag: rational numbers between two rational numbers

Questions Related to rational numbers between two rational numbers

State true or false:

Five rational numbers between.
$\dfrac{-3}{2}$ and $\dfrac{5}{3}$ are $\dfrac{-8}{6},\dfrac{-7}{6},0,\dfrac{1}{6},\dfrac{2}{6}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{-3}{2}$ and $\displaystyle\frac{5}{3}$

Take an LCM of these two numbers: $\displaystyle\frac{-9}{6}$ and $\displaystyle\frac{10}{6}$

All the numbers between $\displaystyle\frac{-9}{6}$ and $\displaystyle\frac{10}{6}$ form the answer

Some of these numbers are $\displaystyle\frac{-8}{6}$, $\displaystyle\frac{-7}{6}$, $\displaystyle{0}$, $\displaystyle\frac{1}{6}$, $\displaystyle\frac{2}{6}$


Hence the statement is true

State true or false:

Ten rational numbers between $\dfrac{3}{5}$ and $\dfrac {3}{4}$ are 

$\displaystyle\frac{97}{160},\frac{98}{160},\frac{99}{160},\frac{100}{160},\frac{101}{160},\frac{102}{160},\frac{103}{160},\frac{104}{160},\frac{105}{160},\frac{106}{160}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{3}{5}$ and $\displaystyle\frac{3}{4}$

Take an LCM of these two numbers: $\displaystyle\frac{12}{20}$ and $\displaystyle\frac{15}{20}$


So now to make the denominator $(160)$ as per the question we need to
multiply numerator and denominator by $8$: $\displaystyle\frac{96}{160}$ and $\displaystyle\frac{120}{160}$

All the numbers between $\displaystyle\frac{96}{160}$ and $\displaystyle\frac{120}{160}$ form the answer

Some of these numbers are $\displaystyle\frac{97}{160}$, $\displaystyle\frac{98}{160}$, $\displaystyle\frac{99}{160}$, $\displaystyle\frac{100}{160}$, $\displaystyle\frac{101}{160}$, $\displaystyle\frac{102}{160}$, $\displaystyle\frac{103}{160}$, $\displaystyle\frac{104}{160}$, $\displaystyle\frac{105}{160}$, $\displaystyle\frac{106}{160}$

Two rational numbers between $\dfrac{1}{5}$ and $\dfrac{4}{5}$ are :

  1. 1 and $\dfrac{3}{5}$

  2. $\dfrac{2}{5}$ and $\dfrac{3}{5}$

  3. $\dfrac{1}{2}$ and $\dfrac{2}{1}$

  4. $\dfrac{3}{5}$ and $\dfrac{6}{5}$


Correct Option: B
Explanation:

Since the denominator of both rational numbers are same. So, for getting the rational numbers between the given rational numbers, we only have to consider the numerators of the rational numbers.

Two numbers between 1 & 4 are 2 and 3.
So, two rational numbers between the given rational numbers will be $\dfrac { 2 }{ 5 }$ and $ \dfrac { 3 }{ 5 } $
So, correct answer is option B.

A rational number lying between $\sqrt{2}$ and $\sqrt{3}$ is :

  1. $\dfrac{\sqrt{2}+\sqrt{3}}{2}$

  2. $\sqrt{6}$

  3. 1.6

  4. 1.9


Correct Option: C
Explanation:

$\sqrt {2  } \cong $ 1.41....and $\sqrt {3  } \cong $ 1.73..

Now we see that option A is irrational number so it is incorrect , Option B is also irrational number so it is also incorrect ,Option C is rational number and lie between the given number so it is correct , Option D is rational number but it does not lie between the given number so it is incorrect.

The Rational Number $\dfrac { -18 }{ 5 } $ lies between the consecutive integers

  1. $-2$ and$-2$

  2. $-3$ and $-4$

  3. $-4$ and $-5$

  4. $-5$ and$-6$


Correct Option: B
Explanation:

$-\cfrac { 18 }{ 5 } =-3.6\Rightarrow $ lies between $-4$ and $-3$

Find the real numbers between the following

  1. $8$ and $9$

  2. $\dfrac{1}{9}$ and $\dfrac{2}{9}$

  3. $-4$ and $-3$

  4. $0.75$ and $1.2$


Correct Option: A

Find two rational numbers lying between $\dfrac{-1}{3}$ and $\dfrac{1}{2}$.

  1. -1/6,1 /6

  2. -2/3, 2/3

  3. none

  4. both


Correct Option: A

Which of the rational number lies between $-\dfrac { 2}{ 3} $ and $\dfrac {1 }{4}$

  1. $ {\dfrac{ - 5} {24}}$

  2. ${\dfrac {25} {12}}$

  3. ${\dfrac {51}  {24}}$

  4. ${\dfrac {5} {12}}$


Correct Option: A
Explanation:

Given the fractions $-\dfrac { 2}{ 3} $ and $\dfrac {1 }{4}$ can be written as $-\dfrac{8}{12}$ and $\dfrac{3}{12}$ or, $-\dfrac{16}{24}$ and $\dfrac{6}{24}$.

Now it is clear that $-\dfrac{5}{24}$ lies between the given fractions.

What is the sum of the addictive inverse of $\frac{2}{3}$ and the reciprocal of $\frac{9}{8}$?

  1. $\frac{3}{8}$

  2. -$\frac{3}{8}$

  3. $\frac{2}{9}$

  4. -$\frac{2}{9}$


Correct Option: C

Find five rational numbers between $\displaystyle\frac{-3}{2}$ and $\displaystyle\frac{5}{3}$.

  1. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-13}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{2}{6}$

  2. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{13}{6}$

  3. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{11}{6}$

  4. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{2}{6}$


Correct Option: D
Explanation:
Converting the given rational numbers with the same denominators
$\cfrac{2}{3}=\cfrac{2\times5}{3\times5}=\cfrac{10}{15}$ and $\cfrac{4}{5}=\cfrac{4\times3}{5\times3}=\cfrac{12}{15}$

Also, $\cfrac{2}{3}=\cfrac{10}{15}=\cfrac{10\times4}{15\times4}=\cfrac{40}{60}$ and $\cfrac{4}{5}=\cfrac{12}{15}=\cfrac{12\times4}{15\times4}=\cfrac{48}{60}$

We know that $40,\,<\,41\,<\,42\,<\,43\,<44\,<45\,<\,46\,<\,47\,<\,48$
$\Rightarrow\cfrac{40}{60}\,<\,\cfrac{41}{60}\,<\,\cfrac{42}{60}\,<\,\dots\,<\,\cfrac{47}{60}\,<\,\cfrac{48}{60}$
Thus, we have the following five rational numbers between $\cfrac{2}{3}$ and $\cfrac{4}{5}$
$\cfrac{41}{60},\,\cfrac{43}{60},\,\cfrac{43}{60}\,\cfrac{44}{60}$ and $\cfrac{45}{60}$.

Converting the given rational numbers with the same denominators 
$\cfrac{-3}{2}=\cfrac{-3\times3}{2\times3}=\cfrac{-9}{6}$ and $\cfrac{5}{3}=\cfrac{5\times2}{3\times2}=\cfrac{10}{6}$

We know that $-9\,<\,-8\,<\,-7\,<\,-6\,<\,\dots\,<\,0\,<\,1\,<\,2\,<\,8\,<\,9\,<\,10$
$\Rightarrow\cfrac{-9}{6}\,<\,\cfrac{-8}{6}\,<\,\cfrac{-7}{6}\,<\,\cfrac{-6}{6}\,<\,\dots\,<\,\cfrac{0}{6}\,<\,\cfrac{1}{6}\,<\,\cfrac{2}{6}\,<\,\dots\,<\,\cfrac{8}{6}\,<\,\cfrac{9}{6}\,<\,\cfrac{10}{6}$.

Thus, we have the following five rational numbers between $\cfrac{-3}{2}$ and $\cfrac{5}{3}$ 
$\Rightarrow \cfrac{-8}{6},\,\cfrac{-7}{6},\,\cfrac{0}{6},\,\cfrac{1}{6}and\cfrac{2}{6}$