Tag: oscillations due to a spring

Questions Related to oscillations due to a spring

The frequency $f$ of vibrations of a mass $m$ suspended from a spring of spring constant $k$ is given by $f = Cm^xk^y$, where $C$ is a dimensionless constant. The values of $x$ and $y$ are respectively:

  1. $\dfrac{1}{2}, \dfrac{1}{2}$

  2. $-\dfrac{1}{2}, -\dfrac{1}{2}$

  3. $\dfrac{1}{2}, -\dfrac{1}{2}$

  4. $-\dfrac{1}{2}, \dfrac{1}{2}$


Correct Option: D
Explanation:
We know $F=-KK\Rightarrow dim\left( K \right) =\left[ { MLT }^{ -2 } \right] \left[ { L }^{ -1 } \right] ={ ML }^{ 0 }{ T }^{ -2 }$
$dim\left( M \right) ={ ML }^{ 0 }{ T }^{ 0 }$    $dim\left( f \right) =\left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ -1 } \right] $
$f={ Cm }^{ x }{ K }^{ y }\Rightarrow { M }^{ 0 }{ L }^{ 0 }{ T }^{ -1 }={ \left[ { ML }^{ 0 }{ T }^{ 0 } \right]  }^{ k }{ \left[ { ML }^{ 0 }{ T }^{ -2 } \right]  }^{ y }$
$\Rightarrow$  Comparing powers of $M,L$ and $T$ gives,
$x+y=0\quad \quad -2y=-1\quad \Rightarrow \quad y=\dfrac { 1 }{ 2 } $
and $x=-1/2$

Frequency of a block in spring-mass system is $\displaystyle \upsilon $, if it is taken in a lift slowly accelerating upward, then frequency will 

  1. decrease

  2. increase

  3. remain constant

  4. none


Correct Option: C
Explanation:

$\omega=2\pi\sqrt{\dfrac{K}{M}}$

Frequency is independent of gravity
Hence it will remain constant

A uniform spring has certain mass suspended from it and it's period of vertical oscillations is ${t} _{1}$. The spring is now cut in $2$ parts having lengths in ratio $1:2$  and these springs are now connected in series and then in parallel. find out the ratio of the time period of these two ossillation?

  1. $1$

  2. $\sin \theta$

  3. $\sqrt {\dfrac {2}{9}}$

  4. $\sqrt {\dfrac {9}{2}}$


Correct Option: C
Explanation:
Let $k$ be initial force constant of spring,${k} _{1}$ and ${k} _{2}$ be the force constant of neew springs
We can derive,
$ kl= constant $
$\Rightarrow \dfrac{{x} _{1}}{{x} _{2}}=1/2$
$\Rightarrow \dfrac{{k} _{1}}{{k} _{2}}=2$     ........$(1)$
$so k _1=3k, k _2=3k/2 $
As initially these lengths were in series:
$\dfrac{1}{k}=\dfrac{1}{{k} _{1}}+\dfrac{1}{{k} _{2}}$
$\Rightarrow \dfrac{1}{k' _1}=\dfrac{1}{3{k} _{1}}+\dfrac{2}{3{k} _{1}}$
$\Rightarrow \dfrac{1}{k' _1}=\dfrac{1}{{k} _{1}}$
$\Rightarrow {k'} _{1}= k\ $
When these two stringd are connected in parallel,
${k _2}^{\prime}={k} _{1}+{k} _{2}$

${k _2}^{\prime}=\dfrac{3k}{2}+3k$

${k _2}^{\prime}=\dfrac{9k}{2}$

Time period is 
$\dfrac{{T _1}^{\prime}}{T' _2}=\sqrt{\dfrac{k' _1}{{k' _2}^{\prime}}}$
$\Rightarrow \dfrac{{T _1}^{\prime}}{T' _2}=\sqrt{\dfrac{2}{9}}$

A $1.5$ kg block at rest on a tabletop is attached to a horizontal spring having a spring constant of $19.6$ N/m. The spring is initially unstretched. A constant $20.0$ N horizontal force is applied to the object causing the spring to stretch.Determine the speed of the block after it has moved $0.30$ m from equilibrium if the surface between the block and the tabletop is frictionless.

  1. $2.61\ m/s$

  2. $3.61\ m/s$

  3. $7.61\ m/s$

  4. $8.1\ m/s$


Correct Option: B
Explanation:

This system will exhibits S.H.M with angular frequency $\omega =\sqrt { \cfrac { k }{ m }  } =\sqrt { \cfrac { 19.6 }{ 1.5 }  } $

$k$= spring constant 
$m$= mass of the body
The string stretched by the maximum A restoring force at maximum stretch= force acting on body
$\Rightarrow kA=F$
$\Rightarrow A=\cfrac { F }{ k } =\cfrac { 20 }{ 19.6 } $
$F=20N$
$K=19.6\quad N/m$
Now if x is displacement from mean position, the velocity is given by:
$v=\omega =\sqrt { ({ A }^{ 2 }-{ x }^{ 2 }) } $
$v=\omega =\sqrt { \cfrac { 19.6 }{ 1.5 } ({ \cfrac { 20 }{ 19.6 }  }^{ 2 }-{ 0.3 }^{ 2 }) } $
$=3.523m/s$

An infinite number of springs having force constants as K, 2K, 4K, 8K, .......$\displaystyle \infty $ respectively are connected in series; then equivalent spring constant is 

  1. K

  2. 2K

  3. $\displaystyle \frac{K}{2}$

  4. $\displaystyle \infty $


Correct Option: C
Explanation:

For the springs connected in series

$\dfrac{1}{K _{eq}}=\dfrac{1}{K}+\dfrac{1}{2K}+\dfrac{1}{4K}+\dfrac{1}{8K}+......$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(1+\dfrac{1}{2}+\dfrac{1}{4}+.....)$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(\dfrac{1}{1-\dfrac{1}{2}})$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(2)$
$K _{eq}=\dfrac{K}{2}$

A body of mass $m$ is suspended from a spring of spring constant $k$. A damping force proportional to the velocity exerts itself on the mass. An appropriate representation of the motion is 

  1. $ m \dfrac{d^2x}{dt^2} - c \dfrac{dx}{dt} + kx = 0$

  2. $ m \dfrac{d^2x}{dt^2} + c \dfrac{dx}{dt} - kx = 0$

  3. $ m \dfrac{d^2x}{dt^2} - c \dfrac{dx}{dt} - kx = 0$

  4. $ m \dfrac{d^2x}{dt^2} + c \dfrac{dx}{dt} + kx = 0$


Correct Option: D
Explanation:
The forces on the mass $m$ are due to spring and damper.

Suppose the mass moves by a distance $x$ from equilibrium and travels with a velocity $\displaystyle \frac{dx}{dt}$, then

Force due to spring is $-kx$ and force due to damper is $\displaystyle -c\frac{dx}{dt}$

By Newton's Second Law of motion, we have $m\displaystyle \frac{d^2x}{dt^2} = -kx-c\frac{dx}{dt}$

Thus, the equation of motion is $\displaystyle m\frac{d^2x}{dt^2}+c\frac{dx}{dt}+kx=0$

A body of mass $m$ attached to the spring experiences a drag force proportional to its velocity and an external force $F(t) = F _o \cos \omega _ot$. The position of the mass at any point in time can be given by:

  1. $x(t) = c _1 \sin (\omega t + \phi) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  2. $x(t) = c _1 \cos (\omega t + \phi) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  3. $x(t) = c _1 \sin (\omega t) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  4. $x(t) = c _1 \cos (\omega t) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$


Correct Option: A,B,C,D
Explanation:

Initially, we already know that the displacement at any moment (Instant) of time for spring mass system is:

$x=a\sin { (\omega t+\phi ) } $ or,
$x=a\cos { (\omega t+\phi ) } $
And here an external force is experienced thus, all the four options give position at any time.

The natural angular frequency of a particle of mass 'm' attached to an ideal spring of force constant 'K' is

  1. $\sqrt{\frac{K}{m}}$

  2. $\sqrt{\frac{m}{K}}$

  3. $\left ( \frac{K}{m} \right )^{2}$

  4. $\left ( \frac{m}{K} \right )^{2}$


Correct Option: A
Explanation:
Suppose you displace the particle by a distance $'x'$
The spring now exerts a force,
This provides nccenary force for $SHM$
$\Rightarrow \ F=mwe^2x=k2$ ($w:$ natural angular frequency )
$\Rightarrow \ w=\sqrt {K/m}$

Spring in vehicles are introduces to:

  1. Reduce

  2. Reduce impluse

  3. Reduce force

  4. Reduce velocity


Correct Option: A

A block of mass m is hanging vertically by spring of spring constant k. If the mass is made to oscillate vertically, its total energy is:

  1. maximum at the extreme position

  2. maximum at the mean position

  3. minimum at the mean position

  4. same at all positions


Correct Option: D
Explanation:

The block executes SHM. In SHM, the total energy remains constant at all positions.