Tag: example of simple harmonic motion

Questions Related to example of simple harmonic motion

The frequency $f$ of vibrations of a mass $m$ suspended from a spring of spring constant $k$ is given by $f = Cm^xk^y$, where $C$ is a dimensionless constant. The values of $x$ and $y$ are respectively:

  1. $\dfrac{1}{2}, \dfrac{1}{2}$

  2. $-\dfrac{1}{2}, -\dfrac{1}{2}$

  3. $\dfrac{1}{2}, -\dfrac{1}{2}$

  4. $-\dfrac{1}{2}, \dfrac{1}{2}$


Correct Option: D
Explanation:
We know $F=-KK\Rightarrow dim\left( K \right) =\left[ { MLT }^{ -2 } \right] \left[ { L }^{ -1 } \right] ={ ML }^{ 0 }{ T }^{ -2 }$
$dim\left( M \right) ={ ML }^{ 0 }{ T }^{ 0 }$    $dim\left( f \right) =\left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ -1 } \right] $
$f={ Cm }^{ x }{ K }^{ y }\Rightarrow { M }^{ 0 }{ L }^{ 0 }{ T }^{ -1 }={ \left[ { ML }^{ 0 }{ T }^{ 0 } \right]  }^{ k }{ \left[ { ML }^{ 0 }{ T }^{ -2 } \right]  }^{ y }$
$\Rightarrow$  Comparing powers of $M,L$ and $T$ gives,
$x+y=0\quad \quad -2y=-1\quad \Rightarrow \quad y=\dfrac { 1 }{ 2 } $
and $x=-1/2$

Frequency of a block in spring-mass system is $\displaystyle \upsilon $, if it is taken in a lift slowly accelerating upward, then frequency will 

  1. decrease

  2. increase

  3. remain constant

  4. none


Correct Option: C
Explanation:

$\omega=2\pi\sqrt{\dfrac{K}{M}}$

Frequency is independent of gravity
Hence it will remain constant

A uniform spring has certain mass suspended from it and it's period of vertical oscillations is ${t} _{1}$. The spring is now cut in $2$ parts having lengths in ratio $1:2$  and these springs are now connected in series and then in parallel. find out the ratio of the time period of these two ossillation?

  1. $1$

  2. $\sin \theta$

  3. $\sqrt {\dfrac {2}{9}}$

  4. $\sqrt {\dfrac {9}{2}}$


Correct Option: C
Explanation:
Let $k$ be initial force constant of spring,${k} _{1}$ and ${k} _{2}$ be the force constant of neew springs
We can derive,
$ kl= constant $
$\Rightarrow \dfrac{{x} _{1}}{{x} _{2}}=1/2$
$\Rightarrow \dfrac{{k} _{1}}{{k} _{2}}=2$     ........$(1)$
$so k _1=3k, k _2=3k/2 $
As initially these lengths were in series:
$\dfrac{1}{k}=\dfrac{1}{{k} _{1}}+\dfrac{1}{{k} _{2}}$
$\Rightarrow \dfrac{1}{k' _1}=\dfrac{1}{3{k} _{1}}+\dfrac{2}{3{k} _{1}}$
$\Rightarrow \dfrac{1}{k' _1}=\dfrac{1}{{k} _{1}}$
$\Rightarrow {k'} _{1}= k\ $
When these two stringd are connected in parallel,
${k _2}^{\prime}={k} _{1}+{k} _{2}$

${k _2}^{\prime}=\dfrac{3k}{2}+3k$

${k _2}^{\prime}=\dfrac{9k}{2}$

Time period is 
$\dfrac{{T _1}^{\prime}}{T' _2}=\sqrt{\dfrac{k' _1}{{k' _2}^{\prime}}}$
$\Rightarrow \dfrac{{T _1}^{\prime}}{T' _2}=\sqrt{\dfrac{2}{9}}$

A $1.5$ kg block at rest on a tabletop is attached to a horizontal spring having a spring constant of $19.6$ N/m. The spring is initially unstretched. A constant $20.0$ N horizontal force is applied to the object causing the spring to stretch.Determine the speed of the block after it has moved $0.30$ m from equilibrium if the surface between the block and the tabletop is frictionless.

  1. $2.61\ m/s$

  2. $3.61\ m/s$

  3. $7.61\ m/s$

  4. $8.1\ m/s$


Correct Option: B
Explanation:

This system will exhibits S.H.M with angular frequency $\omega =\sqrt { \cfrac { k }{ m }  } =\sqrt { \cfrac { 19.6 }{ 1.5 }  } $

$k$= spring constant 
$m$= mass of the body
The string stretched by the maximum A restoring force at maximum stretch= force acting on body
$\Rightarrow kA=F$
$\Rightarrow A=\cfrac { F }{ k } =\cfrac { 20 }{ 19.6 } $
$F=20N$
$K=19.6\quad N/m$
Now if x is displacement from mean position, the velocity is given by:
$v=\omega =\sqrt { ({ A }^{ 2 }-{ x }^{ 2 }) } $
$v=\omega =\sqrt { \cfrac { 19.6 }{ 1.5 } ({ \cfrac { 20 }{ 19.6 }  }^{ 2 }-{ 0.3 }^{ 2 }) } $
$=3.523m/s$

An infinite number of springs having force constants as K, 2K, 4K, 8K, .......$\displaystyle \infty $ respectively are connected in series; then equivalent spring constant is 

  1. K

  2. 2K

  3. $\displaystyle \frac{K}{2}$

  4. $\displaystyle \infty $


Correct Option: C
Explanation:

For the springs connected in series

$\dfrac{1}{K _{eq}}=\dfrac{1}{K}+\dfrac{1}{2K}+\dfrac{1}{4K}+\dfrac{1}{8K}+......$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(1+\dfrac{1}{2}+\dfrac{1}{4}+.....)$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(\dfrac{1}{1-\dfrac{1}{2}})$
$\dfrac{1}{K _{eq}}=\dfrac{1}{K}(2)$
$K _{eq}=\dfrac{K}{2}$

A body of mass $m$ is suspended from a spring of spring constant $k$. A damping force proportional to the velocity exerts itself on the mass. An appropriate representation of the motion is 

  1. $ m \dfrac{d^2x}{dt^2} - c \dfrac{dx}{dt} + kx = 0$

  2. $ m \dfrac{d^2x}{dt^2} + c \dfrac{dx}{dt} - kx = 0$

  3. $ m \dfrac{d^2x}{dt^2} - c \dfrac{dx}{dt} - kx = 0$

  4. $ m \dfrac{d^2x}{dt^2} + c \dfrac{dx}{dt} + kx = 0$


Correct Option: D
Explanation:
The forces on the mass $m$ are due to spring and damper.

Suppose the mass moves by a distance $x$ from equilibrium and travels with a velocity $\displaystyle \frac{dx}{dt}$, then

Force due to spring is $-kx$ and force due to damper is $\displaystyle -c\frac{dx}{dt}$

By Newton's Second Law of motion, we have $m\displaystyle \frac{d^2x}{dt^2} = -kx-c\frac{dx}{dt}$

Thus, the equation of motion is $\displaystyle m\frac{d^2x}{dt^2}+c\frac{dx}{dt}+kx=0$

A body of mass $m$ attached to the spring experiences a drag force proportional to its velocity and an external force $F(t) = F _o \cos \omega _ot$. The position of the mass at any point in time can be given by:

  1. $x(t) = c _1 \sin (\omega t + \phi) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  2. $x(t) = c _1 \cos (\omega t + \phi) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  3. $x(t) = c _1 \sin (\omega t) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$

  4. $x(t) = c _1 \cos (\omega t) + (\dfrac{F _o}{\omega ^2 - \omega _o ^2}) \cos \omega _o t$


Correct Option: A,B,C,D
Explanation:

Initially, we already know that the displacement at any moment (Instant) of time for spring mass system is:

$x=a\sin { (\omega t+\phi ) } $ or,
$x=a\cos { (\omega t+\phi ) } $
And here an external force is experienced thus, all the four options give position at any time.

A large box is accelerated up the inclined plane with an acceleration a and pendulum is kept vertical (Somehow by an external agent) as shown in figure.Now if the pendulum is set free to oscillate from such position, then what is the tension in the string immediately after the pendulum is set free? (mass of $500m$)

  1. $mg$

  2. $ma _{o} \sin\theta$

  3. $\left( m g + m a _ { 0 } \sin \theta \right)$

  4. Zero


Correct Option: C

 The time period of oscillation of a torsional pendulum of moment of inertia I is

  1. $T =2 \pi \sqrt{I/k}$

  2. $T =2 \pi \sqrt{I/2k}$

  3. $T =2 \pi \sqrt{2I/k}$

  4. $T =2 \pi \sqrt{I/4k}$


Correct Option: A
Explanation:

The time period of oscillations of a torsional pendulum is $T =2 \pi \sqrt(I/k)$

The correct option is (a)

A bullet of mass $'m'$ hits a pendulum bob of mass $'2m'$ with a velocity $'v'$ and comes out of the bob with velocity $v/2$. Length of the pendulum is $2$ meter and $g=10 ms^{-2}$. The minimum value of $'v'$ for the bullet so that the bob may complete one revolution in the verticle is

  1. $40 ms^{-1}$

  2. $2.20 ms^{-1}$

  3. $3.15 ms^{-1}$

  4. $10 ms^{-1}$


Correct Option: A