Tag: division of a fraction

Questions Related to division of a fraction

The value of $\displaystyle\frac{1}{\sqrt{3}+\sqrt{2}-1}$ on simplifying upto 3 decimal places, given that $\sqrt{2}=1.4142$ and $\sqrt{6}=2.4495$ is

  1. 0.166

  2. 0.366

  3. 0.466

  4. 0.566


Correct Option: C
Explanation:

$\frac { 1 }{ \sqrt { 3 } +\sqrt { 2 } -1 } $
$=\frac { \sqrt { 3 } -\left( \sqrt { 2 } -1 \right)  }{ \left( \sqrt { 3 } +\left( \sqrt { 2 } -1 \right)  \right) \left( \sqrt { 3 } -\left( \sqrt { 2 } -1 \right)  \right)  } Multiplying\sqrt { 3 } -\left( \sqrt { 2 } -1 \right) \quad with\quad numerator\quad and\quad denominator\quad $
$=\frac { \sqrt { 3 } -\left( \sqrt { 2 } -1 \right)  }{ 3-{ \left( \sqrt { 2 } -1 \right)  }^{ 2 } } $
 $=\frac { \sqrt { 3 } -\left( \sqrt { 2 } -1 \right)  }{ 3-{ \left( 2+1-2\sqrt { 2 }  \right)  } } $
 $=\frac { \sqrt { 3\quad  } -\sqrt { 2 } +1 }{ 2\sqrt { 2 }  } $
$=\frac { 1.732-1.4142+1 }{ 2.8284 } =0.466$
                                               $(\sqrt { 3 } =\frac { \sqrt { 6 }  }{ \sqrt { 2 }  } =\frac { 2.4495 }{ 1.4142 } =1.732)$

Place value chart is extended on .............. side to provide place for fractions

  1. right

  2. left

  3. no

  4. None of these


Correct Option: A
Explanation:

That is the role of the decimal point. The decimal point separates the place values that are whole values on the left from the place values that are fractional parts on the right.

So option A is the correct answer.

If $\displaystyle 2805\div 2.55=1100$ then $\displaystyle 280.5\div 25.5=$ _______

  1. 1.1

  2. 1.01

  3. 0.11

  4. 11


Correct Option: D
Explanation:

$\displaystyle \frac{280.5}{25.5}=\frac{280.5}{25.5}\times \frac{10}{10}\times \frac{10}{10}$

$\displaystyle =\frac{2805}{2.55}\times \frac{1}{100}$

$\displaystyle =\frac{1100}{100}=11$

The fraction $\displaystyle \frac{9}{4}$ can be written as

  1. $\displaystyle \dfrac{\dfrac{9}{2}}{\dfrac{4}{2}}$

  2. $\displaystyle \dfrac{\dfrac{9}{4}}{1}$

  3. $\displaystyle \dfrac{\dfrac{9}{5}}{\dfrac{4}{5}}$

  4. $\displaystyle \dfrac{\dfrac{7}{6}}{\dfrac{9}{4}}$


Correct Option: A,B,C
Explanation:
$ \dfrac{\dfrac{9}{2}}{\dfrac{4}{2}} = \dfrac{9}{2} \div \dfrac 42 =\dfrac 92 \times \dfrac 24  = \dfrac 94$

$ \dfrac{\dfrac{9}{4}}{1} = \dfrac{9}{4} \div 1 = \dfrac 92 \times 1 = \dfrac 94$

$ \dfrac{\dfrac{9}{5}}{\dfrac{4}{5}} = \dfrac{9}{5} \div \dfrac 45 =\dfrac 95 \times \dfrac 45  = \dfrac 94$

So, options $A, B$ and $C$ are correct.

Which of the following is complex fraction?

  1. $\dfrac{6\dfrac{1}{3}}{9}$

  2. $\dfrac{4}{9}$

  3. $\dfrac{5}{9}$

  4. $\dfrac{8}{9}$


Correct Option: A
Explanation:

$\dfrac{6\dfrac{1}{3}}{9}$ is complex fraction.


So, option A is correct.

Divide $\dfrac35$ by $4$.

  1. $\dfrac{12}5$

  2. $\dfrac3{20}$

  3. $\dfrac{12}{20}$

  4. $\dfrac35$


Correct Option: B
Explanation:
According to problem

$ \dfrac{3}{5}  \div 4$

$  = \dfrac{3}{5} \times \dfrac14$

$=  \dfrac3{20} $

So option $B $ is correct

Divide $\dfrac{25}{36}$ by $5$.

  1. $\dfrac{5}{6}$

  2. $\dfrac{25}{6}$

  3. $\dfrac{5}{36}$

  4. $\dfrac{36}{5}$


Correct Option: C
Explanation:

Given that 

divide $\dfrac{25}{36} $ by $5$, writing the expression

$\dfrac{25}{36}  \div 5$

$ = \dfrac{25}{36}  \times  \dfrac15$

$ = \dfrac{5}{36}  $

So option $C $ is correct

Divide $\dfrac45$ by $2$.

  1. $\dfrac25$

  2. $\dfrac15$

  3. $\dfrac85$

  4. None of these


Correct Option: A
Explanation:

$\dfrac{4}{5} \div 2 = \dfrac{\dfrac{4}{5}}{2} = \dfrac{4}{10}$


On simplifying, dividing numerator and denominator by $2$, we get $\dfrac{2}{5}$

If we divide $1$ by a fraction $x$, we get ______ $x$.

  1. same fraction as

  2. reciprocal of

  3. double of

  4. half of


Correct Option: B
Explanation:

Every number has a reciprocal except 0 $(\dfrac{1}{0}$ is undefined$)$. The reciprocal is shown as $\dfrac{1}{x}$. 


When we multiply a number by its reciprocal we get $1$

$\Rightarrow$ If we divide $1$ by $x$, we get reciprocal of $x$.

Divide $10$ by $\dfrac{20}{19}$.

  1. $\dfrac{19}{2}$

  2. $\dfrac{1}{20}$

  3. $\dfrac{19}{20}$

  4. $\dfrac{9}{2}$


Correct Option: A
Explanation:
According to problem
$10$   $\div \dfrac{20}{19}$

$  = 10 \times \dfrac{19}{20}$
$=  \dfrac{19}2 $