Tag: calculations and mental strategies 4

Questions Related to calculations and mental strategies 4

$6$ thousandths is:

  1. $0.06$

  2. $0.006$

  3. $6.000$

  4. $0.066$


Correct Option: A
Explanation:

Place value chart of decimal number

Tenths Hundredths Thousandths
10 100 1000

If $\displaystyle 1420\div 1.42 =1000,$ then $142.0\div 14.2 =$ 

  1. $1$

  2. $10$

  3. $0.10$

  4. $1000$


Correct Option: B
Explanation:

$\displaystyle \frac { 142.0 }{ 14.2 } = \frac { 142.0 }{ 14.2 }\times \frac { 10 }{ 10 } = \frac { 1420 }{ 142 }=10 $

If $2805\div 2.55=1100$, then $280.5\div 25.5= ...........$

  1. 1.1

  2. 1.01

  3. 0.11

  4. 11


Correct Option: D
Explanation:

$\frac {280.5}{25.5}=\frac {280.5}{25.5}\times \frac {10}{10}\times \frac {10}{10}$
$=\frac {2805}{2.55}\times \frac {1}{100}=\frac {1100}{100}=11$

$2\times 0.5+9\div 0.3+10\times 0.92= ...........$

  1. 33.0

  2. 40.2

  3. 6.0

  4. 31.2


Correct Option: B
Explanation:

By BODMAS rule,
$2\times 0.5+9\div 0.3+10\times 0.92$
$=2\times 0.5+30+10\times 0.92$
$=1.0+30+9.2$
$=40.2$

If $29\times 27=783$; then $0.29\times 0.27= ...............$

  1. 0.0783

  2. 0.783

  3. 78.3

  4. 7.83


Correct Option: A
Explanation:

$0.29\rightarrow 2$ decimal places
$0.27\rightarrow 2$ decimal places
$\therefore 0.29\times 0.27=0.0783$
$(2+2=4$ decimal places)

Find the value of $1000(1+0.1+0.01+0.001).$

  1. 1.111

  2. 1.11

  3. 111.1

  4. 1111


Correct Option: D
Explanation:

$1.000$
$+0.100$
$+0.010$
$\underline {+0.001}$
$\underline {1.111}$
$\Rightarrow 1.111\times 1000=1111$

The value of $\dfrac { 0.1\times 0.1\times 0.1+0.02\times 0.02\times 0.02 }{ 0.2\times 0.2\times 0.2+0.04\times 0.04\times 0.04 } $ is:

  1. $0.0125$

  2. $0.125$

  3. $0.25$

  4. $0.5$


Correct Option: B
Explanation:

Given expression $=\dfrac { { \left( 0.1 \right)  }^{ 3 }+{ \left( 0.02 \right)  }^{ 3 } }{ { 2 }^{ 3 }\left[ { \left( 0.1 \right)  }^{ 3 }+{ \left( 0.02 \right)  }^{ 3 } \right]  } =\dfrac { 1 }{ 8 } =0.125$

Evaluate : $\dfrac { { \left( 2.39 \right)  }^{ 2 }-{ \left( 1.61 \right)  }^{ 2 } }{ 2.39-1.61 } $

  1. $2$

  2. $4$

  3. $6$

  4. $8$


Correct Option: B
Explanation:

Given Expression $=\dfrac { { a }^{ 2 }-{ b }^{ 2 } }{ a-b } =\dfrac { \left( a+b \right) \left( a-b \right)  }{ \left( a-b \right)  } =\left( a+b \right) =\left( 2.39+1.61 \right) =4$

$\dfrac { \left( 0.1667 \right) \left( 0.8333 \right) \left( 0.3333 \right)  }{ \left( 0.2222 \right) \left( 0.6667 \right) \left( 0.1250 \right)  } $ is approximately equal to:

  1. $2$

  2. $2.40$

  3. $2.43$

  4. $2.50$


Correct Option: D
Explanation:

Given expression $=\dfrac { \left( 0.3333 \right)  }{ \left( 0.2222 \right)  } \times \dfrac { \left( 0.1667 \right) \left( 0.8333 \right)  }{ \left( 0.6667 \right) \left( 0.1250 \right)  } $


                             $=\dfrac { 3333 }{ 2222 } \times \dfrac { \dfrac { 1 }{ 6 } \times \dfrac { 5 }{ 6 }  }{ \dfrac { 2 }{ 3 } \times \dfrac { 125 }{ 1000 }  } $

                             $=\left( \dfrac { 3 }{ 2 } \times \dfrac { 1 }{ 6 } \times \dfrac { 5 }{ 6 } \times \dfrac { 3 }{ 2 } \times 8 \right) $

                             $=\dfrac { 5 }{ 2 } $
                             $= 2.50$