Tag: algebra

Questions Related to algebra

For $\alpha, \beta, \gamma \in R$, let $A=\begin{bmatrix} { \alpha  }^{ 2 } & 6 & 8 \ 3 & { \beta  }^{ 2 } & 9 \ 4 & 5 & { \gamma  }^{ 2 } \end{bmatrix}$ and $B=\begin{bmatrix} 2\alpha  & 3 & 5 \ 2 & 2\beta  & 6 \ 1 & 4 & 2\gamma -3 \end{bmatrix}$. If ${ T } _{ r }(A)={ T } _{ r }(B)$ then the value of $\left( \cfrac { 1 }{ \alpha  } +\cfrac { 1 }{ \beta  } +\cfrac { 1 }{ \gamma  }  \right) $ is-

${ T } _{ r }(A)$ is a Trace(A) of a matrix

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

${ T } _{ r }(A)={ \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }$


${ T } _{ r }(B)=2\alpha +2\beta +2\gamma -3$

$\Rightarrow { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }=2\alpha +2\beta +2\gamma -3$

$\Rightarrow

{ \left( \alpha -1 \right)  }^{ 2 }+{ \left( \beta -1 \right)  }^{ 2

}+{ \left( \gamma -1 \right)  }^{ 2 }=0\quad $
$\Rightarrow \quad

\alpha =\beta =\gamma =1\Rightarrow \quad \cfrac { 1 }{ \alpha  }

+\cfrac { 1 }{ \beta  } +\cfrac { 1 }{ \gamma  } =3$

i. Trace of the matrix is called sum of the elements in a principle diagonal of the square matrix. 
ii. The trace of the matrix $\begin{bmatrix}
8 & 7 &5\
5 &8 & 2\
7 & 2 & 8
\end{bmatrix}$ is 24 Which of the following statement is correct. 

  1. Only i

  2. Only ii

  3. Both i and ii

  4. Neither i nor ii


Correct Option: C
Explanation:
$(i)\rightarrow$definition of matrix
$(ii)$ Sum of elements in principle diagonal
$=8+8+8=24$
Option is correct

If $A=\begin{bmatrix}
1 &4  &7 \
2 &6  &5 \
3 &-1  &2
\end{bmatrix}$ and B $=$ diag (1 2 5), then
trace of matrix $AB^{2}$ is

  1. 74

  2. 75

  3. 529

  4. 23


Correct Option: B
Explanation:

Given, $B=diag(1    2    5)$
$\Rightarrow B^{2}=diag(1     4    25)$

Now, $AB^{2}=\begin{bmatrix}1 &0  &0 \ 0 &24  &0 \ 0 &0  &50 \end{bmatrix}$

$\Rightarrow tr(AB^{2})=1+24+50=75$

Let three matrices $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}$; $B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$ then find
${ tr }\left( A \right) +{ tr }\left( \dfrac { ABC }{ 2 }  \right) { tr }\left( \dfrac { A{ \left( BC \right)  }^{ 2 } }{ 4 }  \right) +{ tr }\left( \dfrac { A{ \left( BC \right)  }^{ 3 } }{ 8 }  \right) +....+\infty $, where $tr(A)$ represents trace of matrix $A$.

  1. $6$

  2. $9$

  3. $12$

  4. $15$


Correct Option: A
Explanation:

$A=\left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| ,\quad B=\left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| ,\quad C=\left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ AB\quad =\quad \left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| \left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| \ \qquad =\quad \left| \begin{matrix} 6+2 & 8+3 \ 12+2 & 16+3 \end{matrix} \right| \ \quad \quad \quad =\quad \left| \begin{matrix} 8 & 11 \ 14 & 19 \end{matrix} \right| \ ABC\quad =\quad \left| \begin{matrix} 8 & 11 \ 14 & 19 \end{matrix} \right| \left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ \quad \quad \quad \quad \quad =\quad \left| \begin{matrix} 24-22 & -32+33 \ 42-38 & -56+57 \end{matrix} \right| \ \qquad \quad \quad =\quad \left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| \ { (BC) }^{ 2 }\quad =\quad \left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| \left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ \qquad \quad \quad =\quad { \left| \begin{matrix} 1 & 0 \ 0 & 1 \end{matrix} \right|  }^{ 2 }$

$tr(A)\quad +\quad tr(\frac { ABC }{ 2 } )\quad +\quad tr(\frac { A{ (BC) }^{ 2 } }{ 4 } )\quad +\quad tr(\frac { A{ (BC) }^{ 3 } }{ 8 } )\quad +\quad .\quad .\quad .\quad +\quad \infty $
$\quad =\quad 3\quad +\quad 2\quad +\quad 1\quad +\quad 0\quad +\quad 0\quad +\quad 0\quad +\quad .\quad .\quad .\quad +\quad \infty \ \quad =\quad 6$

Elements of a matrix $A$ of order $10\times10$ are defined as ${ a } _{ ij }={ w }^{ i+j }$(where $w$ is cube root of unity), then trace ($A$) of the matrix is

  1. $0$

  2. $1$

  3. $3$

  4. none of these


Correct Option: D
Explanation:

Here, $A=\begin{bmatrix} { \omega  }^{ 2 } & { \omega  }^{ 3 } & ... & { \omega  }^{ 11 } \ { \omega  }^{ 3 } & { \omega  }^{ 4 } & ... & { \omega  }^{ 12 } \ ... & ... & ... & ... \ { \omega  }^{ 11 } & { \omega  }^{ 12 } &  & { \omega  }^{ 20 } \end{bmatrix}$

$tr(A)={ \omega  }^{ 2 }+{ \omega  }^{ 4 }+{ \omega  }^{ 6 }+.....+{ \omega  }^{ 20 }$

$=\displaystyle \frac { { \omega  }^{ 2 }(1-{ \omega  }^{ 20 }) }{ 1-{ \omega  }^{ 2 } } $

Let $A=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]$ are two matrices such that $AB = (AB)^{-1}$ and $AB\ne I$ (where $I$ is an identity matrix of order $3\times3$).
Find the value of $Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)$ where $Tr.(A)$ denotes the trace of matrix $A$.

  1. 98

  2. 99

  3. 100

  4. 101


Correct Option: C
Explanation:

 $A=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]$
$AB=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]=\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}$
but,$AB=(AB)^{-1}\Rightarrow (AB)^2=I$
$\Rightarrow (AB)^2=\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}=\begin{bmatrix} 25x^{ 2 } & 70x^{ 2 }+14x & 0 \ 0 & 1 & 0 \ 0 & (5x+1)(10x-2) & 25x^{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$
$\Rightarrow x=\displaystyle\frac{-1}{5}$
$Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)=Tr.\left(AB+I+(AB)+...+I\right)$
$tr(AB)=10x+1=-1$ and $tr(I)=3$
$\therefore Tr.\left(AB+I+(AB)+...+I\right)=(-1+3-1+3......+3)=50(3-1)=100$
Hence, option C.

Let $A=\left[\begin{matrix}1 & \displaystyle\frac{3}{2}\1 & 2\end{matrix}\right], B = \left[\begin{matrix}4 & -3\-2 & 2\end{matrix}\right] \mbox{ and } C _r = \left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$ be 3 given matrices. Compute the value of $\sum _{r=1}^{50}{tr.\left((AB)^r C _r\right)}.($ where $tr.(A)$ denotes trace of matrix A $)$

  1. $3(49.3^{50}+1)$

  2. $3(49.3^{49}+1)$

  3. $3(49.3^{48}+1)$

  4. None of these


Correct Option: A
Explanation:

Given, $A=\left[\begin{matrix}1 & \displaystyle\frac{3}{2}\1 & 2\end{matrix}\right], B = \left[\begin{matrix}4 & -3\-2 & 2\end{matrix}\right] $

So, $AB=\left[ \begin{matrix} 1 & 0 \ 0 & 1 \end{matrix} \right] $
$\Rightarrow AB=I$

Now, $(AB)^{r} C _r =I \left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$

$\Rightarrow (AB)^{r} C _r=\left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$

$\sum _{ r=1 }^{ 50 }{ tr.\left( (AB)^{ r }C _{ r } \right)  } =\sum _{ r=1 }^{ 50 }{ tr\left( C _{ r } \right)  } =\sum _{ r=1 }^{ 50 }{ (2r } -1)3^{ r }$

It is an arithmetico-geometric series
$S _{50}=1.3+3.3^{2}+5.3^{3}+......+99.3^{50}$
$3S _{50}=        3^{2}+3.3^{3}+......+97.3^{50}+99.3^{51}$

$\Rightarrow -2S=3+2.3^{2}+2.{3}^{3}+.....+2.3^{50}-99.3^{51}$

$\Rightarrow -2S=3-99.3^{ 51 }+2(3^{ 2 }+{ 3 }^{ 3 }+.....+3^{ 50 })$

$\Rightarrow -2S=3-99.3^{ 51 }+3^{ 51 }-3^{ 2 }$

$\Rightarrow S=3(1+49.3^{ 50 })$

Let $A=\left[\begin{matrix}3x^2\1\6x\end{matrix}\right], B=[a,b,c]$ and $C=\left[\begin{matrix}(x+2)^2&5x^2&2x\5x^2&2x&(x+2)^2\2x&(x+2)^2&5x^2\end{matrix}\right]$ be three given matrices, where $a,b,c$ and $x\in R$, Given that $tr.(AB) = tr.(C) \vee x\in R$, where $tr.(A)$ denotes trace of $A$. Find the value of $(a+b+c)$

  1. 6

  2. 7

  3. 8

  4. 9


Correct Option: B
Explanation:

Given $A=\left[\begin{matrix}3x^2\1\6x\end{matrix}\right], B=[a,b,c]$ 

Here, $AB=\left[ \begin{matrix} 3x^{ 2 } \ 1 \ 6x \end{matrix} \right] [a,b,c]$

$\Rightarrow AB=\left[ \begin{matrix} 3ax^{ 2 } & 3bx^{ 2 } & 3cx^{ 2 } \ a & b & c \ 6ax & 6bx & 6cx \end{matrix} \right] $

$tr(AB)=3ax^{2}+b+6cx$

Now, given $C=\left[\begin{matrix}(x+2)^2&5x^2&2x\5x^2&2x&(x+2)^2\2x&(x+2)^2&5x^2\end{matrix}\right]$

$tr(C)=(x+2)^2+2x+5x^{2}$
$\Rightarrow tr(C)=6x^{2}+6x+4$

Since, we have $tr(AB)=tr(C)$
$\Rightarrow 3ax^{2}+b+6cx=6x^{2}+6x+4$

On comparing, we get $a=2,b=4,c=1$
So, $a+b+c=7$

If $f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and 
$\quad A = \begin{bmatrix}f(x _1,y _1) & f(x _1,y _2) & f(x _1,y _3) \ f(x _2,y _1) & f(x _2,y _2) & f(x _2,y _3) \ f(x _3,y _1) & f(x _3,y _2) & f(x _3,y _3) \end{bmatrix}$ 
such that trace $(A) = 0$, then which of the following is true (only one option)

  1. $det(A) \ge 0$

  2. $det(A) = 0$

  3. $det(A) \le 0$

  4. $det(A) > 0$


Correct Option: A
Explanation:

$f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and
$\quad A = \begin{bmatrix}f(x _1,y _1) & f(x _1,y _2) & f(x _1,y _3) \ f(x _2,y _1) & f(x _2,y _2) & f(x _2,y _3) \ f(x _3,y _1) & f(x _3,y _2) & f(x _3,y _3) \end{bmatrix}$ such that trace $(A) = 0$
$\Rightarrow A=\begin{bmatrix} (x _{ 1 }-y _{ 1 })^{ 2 } & \quad (x _{ 1 }-y _{ 2 })^{ 2 } & \quad (x _{ 1 }-y _{ 3 })^{ 2 } \ (x _{ 2 }-y _{ 1 })^{ 2 } & \quad (x _{ 2 }-y _{ 2 })^{ 2 } & \quad (x _{ 2 }-y _{ 3 })^{ 2 } \ (x _{ 3 }-y _{ 1 })^{ 2 } & \quad (x _{ 3 }-y _{ 2 })^{ 2 } & \quad (x _{ 3 }-y _{ 3 })^{ 2 } \end{bmatrix}$
Trace$(A)=0$
$\Rightarrow (x _1-y _1)^2+(x _2-y _2)^2+(x _3-y _3)^2=0$
$\Rightarrow x _1=y _1; x _2=y _2; x _3=y _3$
$A=\begin{bmatrix} 0 & \quad (y _{ 1 }-y _{ 2 })^{ 2 } & \quad (y _{ 1 }-y _{ 3 })^{ 2 } \ (y _{ 2 }-y _{ 1 })^{ 2 } & 0 & \quad (y _{ 2 }-y _{ 3 })^{ 2 } \ (y _{ 3 }-y _{ 1 })^{ 2 } & \quad (y _{ 3 }-y _{ 2 })^{ 2 } & 0 \end{bmatrix}$
$|A|=2(y _1-y _2)^2(y _2-y _3)^2(y _3-y _1)^2\geq 0$
$\therefore |A|\geq 0$
Hence, option A.

Let three matrices A = $\begin{bmatrix} 2& 1\ 4 & 1\end{bmatrix}; B=\begin{bmatrix} 3&4 \ 2 &3 \end{bmatrix} \,\, and \,\, C = \begin{bmatrix}3 &-4 \  -2& 3\end{bmatrix}$ then 
$t _r(A)+t _r\left ( \frac{ABC}{2} \right )+t _r\left ( \frac{A(BC)^2}{4} \right )+t _r\left ( \frac{A(BC)^3}{8} \right )+....+\infty $

  1. 6

  2. 9

  3. 12

  4. none of these


Correct Option: A
Explanation:
Let $S=t _r(A)+t _r\left ( \frac{ABC}{2} \right )+t _r\left ( \frac{A(BC)^2}{4} \right )+t _r\left ( \frac{A(BC)^3}{8} \right )+....+\infty $

$BC=\begin{bmatrix} 3& 4\\ 2 & 3\end{bmatrix} \begin{bmatrix} 3 & -4 \\-2 & -3 \end{bmatrix} = \begin{bmatrix}1& 0\\ 0 & 1\end{bmatrix}$ 

$\therefore \displaystyle S=t _r(A)+t _r\left ( \frac{A}{2} \right )+t _r\left ( \frac{A}{4} \right ) +....\infty $ 

$t _r(A)=2+1=3$

$\displaystyle S=3+\frac{3}{2}+\frac{3}{4}+....\infty$

The sum of infinite terms of a GP series is $S _\infty= \dfrac{a}{(1-r)}$

$ S=3 \left(\dfrac{1}{1-\dfrac{1}{2}}\right)=6$