Tag: solving (simple) problems

Questions Related to solving (simple) problems

If $a, b, c$ are in A.P., then the roots of the equation $ax^{2}+2bx+c=0$ are

  1. real and distinct

  2. real and equal

  3. real

  4. imaginary


Correct Option: C
Explanation:

If $a,b,c$ are in A.P, then

$2b=a+c$.
Hence the give equation transforms into
$ax^{2}+(a+c)x+c=0$
Hence
$D$
$=B^{2}-4AC$

$=(a+c)^{2}-4ac$

$=a^{2}+c^{2}+2ac-4ac$

$=a^{2}+c^{2}-2ac$

$=(a-c)^{2}$
Now 
$(a-c)^{2}\geq 0$
Hence 
$D\geq 0$.
Or 
$B^{2}-4AC\geq 0$.
Since the discriminant is greater than 0, hence the roots real.

$a^{nm}\ne a^{m^n}$ if

  1. $a=1$

  2. $m=n=1$, $a=6$

  3. $m=n=2$, $a=3$

  4. $m=n=a=0$


Correct Option: D

To fill a cistern, pipes $P, Q$ & $R$ take $20, 15$ and $12$ minutes respectively.  The time in minutes that the three pipes together will take to fill the cistern is 

  1. $5$ min

  2. $10$ min

  3. $15$ min

  4. $15.66$ min


Correct Option: A
Explanation:

Given: pipes $P, Q, R$ takes $20, 15, 12$ minutes respectively to fill a cistern

To find the time in minutes that the three pipes together will take to fill the cistern
Sol: By taking the LCM of $12, 15,20$ we will be able to find the actual capacity of the cistern, i.e., the actual capacity of cistern is 60 L(lets assume the unit to be litres)
IF pipe P can fill the cistern in $20$ minutes. Then in 1 min it can fill $\dfrac {60}{20}=3$ liters

Similarly in 1 min pipe Q can fill $\dfrac {60}{15}=4$ liters
And pipe R can fill $\dfrac {60}{12}=5$ liters
Therefore in 1 min the cistern will be filled by (P in 1 min)+(Q in 1 min)+(R in 1 min)= $(3+4+5) =12$ liters
Now, 
Time taken to fill $12 $ liters=$1$ minute
Therefore, 
Time taken to fill $60$ litres=$\dfrac {60}{12}$ (apply unitary method) =$5$ mins
Therefore, all the three pipes can fill the cistern together in 5 mins

A ball is thrown upwards from a rooftop, $28$m above the ground. It will reach a maximum vertical height and then fall back to the ground. The height of the ball from the ground at time $t$ is $h$, which is given by, $h =$ $(-t^{2}+2t +35) +28$

How long will it take before hitting the ground?

  1. $6$ seconds

  2. $7$ seconds

  3. $8$ seconds

  4. $9$ seconds


Correct Option: D
Explanation:

$h =$ $-t^{2}+2t +35 + 28=0$
$=>$ $t^{2}-2t - 63=0$
$=>(t - 9)(t + 7) = 0$
$=>t = 9$ or $-7$
The time cannot be negative, so the time is $9$ seconds.

The age of a man is the square of his son's age. A year ago, the man's age was $8$ times the age of his son. What is the present age of the man?

  1. $47\ yr$

  2. $49\ yr$

  3. $36\ yr$

  4. $48\ yr$


Correct Option: B
Explanation:

let present age of son be $x$

present age of father be ${ x }^{ 2 }$
$1$ year ago
age of son $=x-1$
age of father = ${ x }^{ 2 }$-1
so 
${ x }^{ 2 }-1=8(x-1)$
${ x }^{ 2 }-8x+7=0$
$(x-7)(x-1)=0$
$x=7$
son's age $= 7 years$
man's age = ${ x }^{ 2 }=49$ years

Solve for $x:2\sqrt { x+5 } =8$

  1. $4$

  2. $6$

  3. $9$

  4. $11$


Correct Option: D
Explanation:

Given, $2\sqrt{x+5}=8$

$\Rightarrow \sqrt{x+5}=4$
On squaring both sides, we get 
$x+5 = 16$
$\Rightarrow x=16-5$
$\Rightarrow x=11$

If $a$ and $b$ are the roots of the quadratic equation $x^2-4x+3=0$, then $(1+a+a^2+a^3...)(1+b+b^2+b^3+....)$ equal to

  1. $\infty$

  2. $\dfrac{1}{4}$

  3. $\dfrac{-1}{6}$

  4. none of these


Correct Option: A
Explanation:

${ x }^{ 2 }-4x+3=0\ (x-1)(x-3)=0\ x=1\quad or\quad 3\ \therefore a=3,\quad b=1\ a+b=4,\quad ab=3\ 1+a+{ a }^{ 2 }+{ a }^{ 3 }+........+\infty =\cfrac { 1 }{ 1-a } (sum\quad of\quad infinite\quad G.P.)\ \therefore (1+a+{ a }^{ 2 }+{ a }^{ 3 }+........+\infty )(1+b+{ b }^{ 2 }+{ b }^{ 3 }+.......+\infty )\ =(\cfrac { 1 }{ 1-a } )(\cfrac { 1 }{ 1-b } )\ =\cfrac { 1 }{ 1-(a+b)+ab } \ =\cfrac { 1 }{ 1-4+3 } =\cfrac { 1 }{ 0 } =\infty $

The number of real solution of the equation $(\dfrac{9}{10})^x=-3+x-x^2$ is-

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A
Explanation:
Let $f\left( x \right) ={ \left( \cfrac { 9 }{ 10 }  \right)  }^{ x }$
$g\left( x \right) =-3+x-{ x }^{ 2 }$
For $x<0$
$f\left( x \right) >1$
$g\left( x \right) -1=-{ x }^{ 2 }+x-4$
$\triangle =1-4\left( -1 \right) \left( -4 \right) $
$=-15<0$
and co efficient of ${ x }^{ 2 }=-1<0$
$\therefore g\left( x \right) -1<0$
$\therefore g\left( x \right) <1$
$\therefore f\left( x \right) -g\left( x \right) $ has no solution if $x<0$
For $x>0$
$f\left( x \right) <1$
$-3+x-{ x }^{ 2 }=f\left( x \right) $
$-{ x }^{ 2 }+x-3-f\left( x \right) =0$
$\triangle =1-4\left( -1 \right) \left( -3-f\left( x \right)  \right) $
$=1-12+4f\left( x \right) $
$\triangle =-11+4f\left( x \right) $
$f\left( x \right)<0$
$4f\left( x \right)-11<-11$
$\therefore \triangle <0$
$f\left( x \right)=g\left( x \right)$ has no real solution for $x>0$
At $x=0$
$f\left( x \right)=1,g\left( x \right)=-3$
$\therefore f\left( x \right)=g\left( x \right)$ has no real solution $\forall x\epsilon R$

If $a,b,c,d$ are four consecutive terms of an increasing A.P., then the roots of the equation
$(x-a)(x-c)+2(x-b)(x-d)=0$ are

  1. $\text{real and distinct}$

  2. $\text {non-real complex}$

  3. $\text {real and equal}$

  4. $\text {integers}$


Correct Option: A
Explanation:
$a,b,c,d$ are $4$ consecutive terms of A

Let $a=m-3n,b=m-n.c=m+n,d=m+3n$

$'2n'$ is common difference

$(x-a)(x-c)+2(x-b)(x-d)=0$

$3{ x }^{ 2 }-\left( a+c+2b+2d \right) x+\left( ac+2bd \right) =0$

$=6m+2n$

$ac+2bd={ m }^{ 2 }-2mn-3{ n }^{ 2 }+2{ m }^{ 2 }+4mn-6{ n }^{ 2 }$

$=3{ m }^{ 2 }+2mn-9{ n }^{ 2 }$

$3{ x }^{ 2 }-\left( 6m+2n \right) x+\left( 3{ m }^{ 2 }+2mn-9{ n }^{ 2 } \right) =0$

$\triangle ={ \left( 6m+2n \right)  }^{ 2 }-4\left( 3 \right) \left( 3{ m }^{ 2 }+2mn-9{ n }^{ 2 } \right) $

$=4\left( 9{ m }^{ 2 }+6mn+{ n }^{ 2 }-9{ m }^{ 2 }-6mn+36{ n }^{ 2 } \right) $

$=4\left( 37 \right) { n }^{ 2 }$

$\triangle >0$

$\therefore $ Roots of $(x-a)(x-c)+2(x-b)(x-d)$ are real and distinct.

If roots of equation $ x^2 - (2n+ 18) x - n-1 = 0 ( n \epsilon Z ) $ are rational, then number of possible value of $n $ is :

  1. $1$

  2. $2$

  3. $0$

  4. Infinite


Correct Option: B