Tag: squares and square roots

Questions Related to squares and square roots

If $\sqrt{24}\, =\, 4.899,$ then the value of $\displaystyle \frac{8}{3}$ is

  1. 0.544

  2. 2.666

  3. 1.633

  4. 1.333


Correct Option: C
Explanation:

$\displaystyle {\sqrt{\frac{8}{3}} = \frac{\sqrt{8}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{3} = \frac{4.899}{3} = 1.633.}$ 

$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, .....}}}$ = ........

  1. Equals $1$

  2. Lies between $0$ and $1$

  3. Lies between $1$ and $2$

  4. Is greater than $2$


Correct Option: C
Explanation:

Let $x=\sqrt { 1+\sqrt { 1+\sqrt { 1+....... }  }  }$

$\therefore { x }^{ 2 }=1+\sqrt { 1+\sqrt { 1+\sqrt { 1+....... }  }  }$
$\Longrightarrow { x }^{ 2 }=1+x$
$\Longrightarrow { x }^{ 2 }-x-1=0$
$\Longrightarrow x=\cfrac { 1\pm \sqrt { 1+4 }  }{ 2 }$
$ \Longrightarrow x=\cfrac { 1\pm \sqrt { 5 }  }{ 2 }$
$ \Longrightarrow \cfrac { 1\pm 2.236 }{ 2 } =\left( -0.618, 1.618 \right) $
We reject the negative value because, from the given expression,

$x$ is positive.
So, $x=1.618$ approximately.
$\therefore 1<x<2$

$\sqrt{(12\, +\, \sqrt{12\, +\, \sqrt{12\, +\, ........}})}\, =\, ?$

  1. 3

  2. 4

  3. 6

  4. Greater than 6


Correct Option: B
Explanation:
Let $\sqrt{(12 + \sqrt{12 + \sqrt{12 + ........}})} = x$
Then, $\sqrt{12 + x} = x$
$ \Rightarrow 12 + x = x^2$
$\Rightarrow x^2 - x - 12 = 0$ 
$\Rightarrow (x - 4) (x + 3) = 0$
$\Rightarrow x = 4$       ...(neglecting $x = -3$)

Find the square root of each of the following correct to three places of decimal.
$17$
$1.7$
$2.5$
$\displaystyle\frac{7}{8}$

  1. $4.153\;;\;1.304\;;\;1.581\;;\;0.935$

  2. $4.123\;;\;1.304\;;\;1.581\;;\;0.995$

  3. $4.123\;;\;1.304\;;\;1.581\;;\;0.935$

  4. $4.123\;;\;1.304\;;\;1.501\;;\;0.935$


Correct Option: C
Explanation:

$17$

$4.123$
$4$$+4$ $17$$16$
$822$$+2$ $100$$81$
$8243$ $1900$$1644$
$25600$$24729$                 $871$

$\therefore$ The square root of $17=4.123$

$1.7$

$0$ $1.303$
$1$$+1$ $1.7$$1$
$23$$+3$ $70$$69$
$2603$ $10000$$7809$
$1191$

$\therefore$ The square root of $1.7=1.303$

$2.5$

$0$ $1.581$
$1$$+1$ $2.5$$1$
$25$$+5$ $150$$125$
$308$$+8$ $2500$$2464$
$3161$ $3600$$3161$                 $439$

$\therefore$ The square root of $2.5=1.581$

$\frac{7}{8}$

$8$ $70$$64$ $0.875$
$60$$56$
$40$$40$             $0$
$0.935$
$0$ $0.875$$0$
$9$$9$ $87$$81$
$183$$+3$ $650$$549$
$1865$ $10100$$9325$
$925$

$\therefore$ The square root of $\frac{7}{8}=0.935$

The simplest form of $\sqrt{864}$ is

  1. $12\sqrt{5}$

  2. $12\sqrt{3}$

  3. $12\sqrt{6}$

  4. $6\sqrt{2}$


Correct Option: C
Explanation:

$\sqrt{864}=\sqrt{2^2\times2^2\times3^2\times2\times3}=2\times2\times3\sqrt{6}=12\sqrt{6}$

Find the least number which must be subtracted from each of the following numbers so as to get a perfect square Also find the square root of the perfect square so obtained 
$(i) 402, (ii) 1989, (iii) 3250, (iv) 825, (v) 4000$

  1. Least number which must be subtracted:$(i) 2, (ii) 22, (iii) 1, (iv) 21, (v) 52$

    Square root of the perfect square:
    $(i) 20, (ii) 34 ,(iii) 55, (iv) 26, (v) 67$

  2. Least number which must be subtracted:$(i) 2, (ii) 53, (iii) 1, (iv) 41, (v) 31$

    Square root of the perfect square:
    $(i) 20, (ii) 44, (iii) 57, (iv) 28, (v) 63$

  3. Least number which must be subtracted:$(i) 6, (ii) 22, (iii) 50, (iv) 31, (v) 40$

    Square root of the perfect square:
    $(i) 19, (ii) 41, (iii) 49 ,(iv) 27 ,(v) 65$

  4. Least number which must be subtracted:$(i) 8, (ii) 41, (iii) 12, (iv) 56, (v) 4$

    Square root of the perfect square:
    $(i) 19 ,(ii) 22, (iii) 37, (iv) 26, (v) 61$


Correct Option: B
Explanation:

For $402$

Nearest perfect square is $400$
$\sqrt{400}$ $=$ $20$
$402$ $-$ $400$ $=$ $2$
For $1989$
Nearest perfect square is $1936$

$\sqrt{1936}$ $=$ $44$
$1936$ $-$ $1989$ $=$ $53$

For $3250$
Nearest perfect square is $3249$

$\sqrt{3249}$ $=$ $57$
$3250$ $-$ $3249$ $=$ $1$
For $825$
Nearest perfect square is $784$
$\sqrt{784}$ $=$ $28$
$825$ $-$ $784$ $=$ $41$
For $4000$
Nearest perfect square is $3969$
$\sqrt{3969}$ $=$ $63$
$4000$ $-$ $3969$ $=$ $31$
From this, Option B is correct answer.

Mr. Hansraj wants to find the least number of boxes to be added to get a perfect square. He already has $7924$ boxes with him. How many more boxes are required?

  1. $819$

  2. $412$

  3. $419$

  4. $176$


Correct Option: D
Explanation:

Find square root by long division method.

$\therefore \sqrt {7924}$ = $89.01$

Hence, the perfect square number smaller than $7924$ is
$89^2 = 7921$
The next perfect square no. is $90^2 = 8100$

So, $8100 - 7924 = 176$
Therefore, the man needs $176$ more boxes in order to get a perfect square number.
So, option D is correct.

$\displaystyle \sqrt { 4.8\times { 10 }^{ 9 } } $ is closest in value to

  1. $2200$

  2. $70000$

  3. $220000$

  4. $7000000$

  5. $22000000$


Correct Option: B
Explanation:

$\displaystyle \sqrt { 4.8\times { 10 }^{ 9 } } $

$=\sqrt{48\times10^{8}}$$\simeq$$7\times10^{4}=70000$
$7^{2}$$=$$49$
Hence Option B is correct.

What is an approximate value of $\sqrt{9805}$?

  1. 98.56

  2. 97.23

  3. 99.05

  4. 100.34


Correct Option: C
Explanation:

$99^2$ = 9801
$100^2$ = 10000
In between this two squares, 9805 is placed.
So the average of $\frac{99 + 100}{2}= 99.5$
Then, $99.5^2 = 9900.25$
So, $\sqrt{9805} \approx 99.05$

Estimate the square root of 500.

  1. 22.5

  2. 20.3

  3. 21.4

  4. 23.6


Correct Option: A
Explanation:

$22^2$ = 484
$23^2$ = 576
In between this two square numbers, 500 is placed.
So average of $\frac{22 + 23}{2}= 22.5$
Then, $22.5^2 = 506.25$
So, $\sqrt{500} \approx 22.5$