Tag: how to check for similarity in triangles?

Questions Related to how to check for similarity in triangles?

In $\triangle A B C$, D is a point on AB such that $A D = \frac { 1 } { 4 } A B$ and E is a point on AC such that $A E = \frac { 1 } { 4 } A C$ then $D E = \frac { 1 } { 8 } B C$

  1. True

  2. False


Correct Option: B

State true or false:

In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at point P, then
$\displaystyle \Delta APB$ is similar to $\displaystyle \Delta CPD.$

  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$ APB and $\triangle$ CPD,
$\angle APB = \angle CPD$ (Vertically opposite angles)
$\angle ABP = \angle CDP$ (Alternate angles of parallel sides AB and CD)
$\angle BAP = \angle DCP$ (Alternate angles of parallel sides AB and CD)
Hence, $\triangle APB \sim \triangle CPD$ (AAA rule)

State true or false:

In parallelogram $ ABCD $. $ E $ is the mid-point of $ AB $ and $ AP $ is parallel to $ EC $ which meets $ DC $ at point $ O $ and $ BC $ produced at $ P $. Hence 
$ O $ is mid-point of $ AP $.

  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$s, APB and ECB,

$\angle ABP = \angle EBC $ (Common angle)

$\angle PAB = \angle CEB$ (Corresponding angles of parallel lines)

$\angle APB = \angle ECB $ (Third angle of the triangle)

Thus $\triangle APB \sim \triangle ECB$ (AAA rule)

Hence, $\dfrac{AB}{EB} = \dfrac{BP}{BC}$ (Corresponding sides of similar triangles)

$2 = \dfrac{BP}{BC}$

$BP = 2 BC$

Now, in $\triangle$s $OPC$ and $APB,$

$\angle OPC = \angle APB$ (Common angle)

$\angle POC = \angle PAB$ (Corresponding angles of parallel lines)

$\angle PCO = \angle PBA$ (Third angle of a triangle)

$\triangle OPC \sim \triangle APB$ (AAA rule)

hence, $\dfrac{PC}{BP} = \dfrac{OP}{AP}$  (Corresponding sides)

$\dfrac{1}{2} = \dfrac{OP}{AP}$ 

$OP = \dfrac{1}{2} AP$

hence, $O$ is the midpoint of $AP$.

State true or false:

In parallelogram $ ABCD $. $ E $ is the mid-point of $ AB $ and $ AP $ is parallel to $ EC $ which meets $ DC $ at point $ O $ and $ BC $ produced at $ P $. Hence
$ BP= 2AD $


  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$s, APB and ECB,
$\angle ABP = \angle EBC $ (Common angle)
$\angle PAB = \angle CEB$ (Corresponding angles of parallel lines)
$\angle APB = \angle ECB $ (Third angle of the triangle)
Thus $\triangle APB \sim \triangle ECB$ 
Hence, $\frac{AB}{EB} = \frac{BP}{BC}$ (Corresponding sides of similar triangles)
$2 = \frac{BP}{BC}$
$BP = 2 BC$
$BP = 2 AD$  (BC = AD)

In quadrilateral ABCD, the diagonals AC and BD intersect each at point O. If $AO=2CO$ and $BO=2DO$; Then,

$\displaystyle \Delta AOB$ is similar to $\displaystyle \Delta COD$

  1. True

  2. False


Correct Option: B
Explanation:

Given: $AO = 2 CO$ or $\dfrac{AO}{CO} = 2$
Also given, $BO = 2 DO$ or $\dfrac{BO}{DO} = 2$
In $\triangle AOB$ and $\triangle COD$, we know 
$\angle AOB = \angle COD$
$\dfrac{AO}{CO} = \dfrac{BO}{DO}$
Thus, $\triangle AOB \sim \triangle COD$ (SAS rule)

$\angle BAC$ of triangle $ABC$ is obtuse and $AB=AC$. $P$ is a point in $BC$ such that $PC= 12$ cm. $ PQ $ and $PR$ are perpendiculars to sides $AB$ and $AC$ respectively. If $PQ= 15$ cm and $=9$ cm; find the length of $PB$.

  1. $20$

  2. $24$

  3. $36$

  4. $18$


Correct Option: A
Explanation:

Given: $AB = AC$, $PQ \perp AB$ and $PR \perp AC$
Since, $AB = AC$
$\angle ABC = \angle ACB$...(I) (Isosceles triangle property)

Now, In $\triangle PBQ$ and $\triangle PRC$
$\angle PBQ = \angle PCR$ (From I)
$\angle PQB = \angle PRC$ (Each $90^{\circ}$)
$\angle QPB = \angle RPC$ (Third angle)
Thus, $\triangle QPB \sim \triangle RPC$ (AAA rule)
Hence, $\dfrac{PQ}{PR} = \dfrac{PB}{PC}$
$\dfrac{15}{9} = \dfrac{PB}{12}$
$PB = \dfrac{15 \times 12}{9}$
$PB = 20$ cm