Tag: multiplication and division of algebraic expressions

Questions Related to multiplication and division of algebraic expressions

The sum of the digits of a 3 digit number is subtracted from the number. The resulting number is always.

  1. Divisible by 6

  2. Not divisible by 6

  3. Divisible by 9

  4. Not divisible by 9


Correct Option: C
Explanation:

Let the no. be $xyz$ sum of digit is $(x+y+z)$ 

as $xyz=100x+10y+z$
then $xyz-(x+y+z)=99x+9y$  
$\therefore $ $\boxed{Always\, divisible\, by\, 9}$

The remainder when the polynomial $1+x^2+x^4+x^6+....+x^{22}$ is divided by $1+x+x^2+x^3+....+x^{11}$ is?

  1. $0$

  2. $2$

  3. $1+x^2+x^4+...+x^{10}$

  4. $2(1+x^2+x^4+....+x^{10})$


Correct Option: D
Explanation:
$ \left( \sum _{n=0}^N x^{n} \right) = \left ( \dfrac{x^{N+1}-1}{x-1} \right ) $

$ \Rightarrow Dividend = \left ( \dfrac{x^{24}-1}{x^{2}-1} \right ) $
$ Divisor = \left ( \dfrac{x^{12}-1}{x-1} \right ) $

Now,
$ \left ( \dfrac{x^{24}-1}{x^{2}-1} \right )  = \left ( \dfrac{x^{12}-1}{x-1} \right ) \left ( \dfrac{x^{12}-1+2}{x+1} \right ) = \left ( \dfrac{\left ( x^{12}-1 \right )^{2}}{x^{2}-1} \right ) + 2\left ( \dfrac{x^{12}-1}{x^{2}-1} \right ) $

$ \Rightarrow Remainder = 2\left ( 1+x^{2}+x^{4}...+x^{10} \right ) $

If the polynomial $x^{19}+x^{17}+x^{13}+x^{11}+x^7+x^5+x^3$ is divided by $(x^2+1)$, then the remainder is:

  1. $1$

  2. $x^2+4$

  3. $-x$

  4. $x$


Correct Option: C