Tag: brackets

Questions Related to brackets

$x^2+y^2 =100$ find $x$ if $y=6$

  1. $\pm 8$

  2. $\pm \sqrt 8$

  3. $\pm 64$

  4. $\pm 4$


Correct Option: A
Explanation:

$x^2+y^2=100\y=6\x^2+6^2=100\x^2=100-36\x^2=64\x=\pm 8$

If ${a}^{2}+{b}^{2}+{c}^{2}-ab-bc-ca=0$, then

  1. $a+b=c$

  2. $b+c=a$

  3. $c+a=b$

  4. $a=b=c$


Correct Option: D
Explanation:
Given,

$a^2+b^2+c^2-ab-bc-ca=0$

$\Rightarrow 2(a^2+b^2+c^2-ab-bc-ca)=2(0)$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ca=0$

$\Rightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0$

$(a-b)^2+(b-c)^2+(c-a)^2=0$

$\Rightarrow a-b=b-c=c-a=0$

$\therefore a=b=c$

If $\displaystyle b=6-\left [ \frac{4b+3}{2a-5} \right ]$, express a in terms of b.

  1. $\displaystyle a=\frac{33-b}{2\left ( 6-b \right )}$

  2. $\displaystyle a=\frac{b-33}{2\left ( 6-b \right )}$

  3. $\displaystyle a=\frac{33-b}{2\left ( b-6 \right )}$

  4. none of the above


Correct Option: A
Explanation:

Given,
$ b = 6 - \left[ \frac { 4b+3 }{ 2a-5 }  \right]  $
$ => \left[ \frac { 4b+3 }{ 2a-5 }  \right] = 6 - b $
$ => 4b + 3 = (6-b)(2a-5) $
$ => 4b + 3 = 12a - 30 - 2ab +5b $
$ => 12a - 33  -2ab + b = 0 $
$ =>  a(12 -2b) = 33 - b $
$ => 2a(6-b) = 33-b $
$ => a = \frac {33-b}{2(6-b)} $

Given $\displaystyle b=\frac{2a}{a-2}$ and $\displaystyle c=\frac{3b-4}{4b+3}$, express c in terms of a.

  1. $\displaystyle c=\frac{2a+8}{11a+6}$

  2. $\displaystyle c=\frac{2a-8}{11a-6}$

  3. $\displaystyle c=\frac{2a+8}{11a-6}$

  4. none of the above


Correct Option: C
Explanation:

Given, $ c = \frac {3b-4}{4b + 3} $

But, $ b = \frac {2a}{a-2} $
Hence, $ c = \frac {3(\frac {2a}{a-2} )-4}{4(\frac {2a}{a-2} ) + 3} $
$ => c = \frac {6a-4a + 8}{8a +3a - 6} $
$ => c = \frac {2a+8}{11a -6} $

The value of $100 - { ( 7 $of $8 + 4 ) \div 5 } $ is

  1. $92$

  2. $78$

  3. $96$

  4. $88$


Correct Option: D
Explanation:

We apply BODMAS rule to find the value of the given expression. According to BODMAS rule, if an expression contains brackets we have to first solve or simplify the bracket followed by of (powers and roots etc.), then division, multiplication, addition and subtraction from left to right.


Since 'of' stands for multiplication, therefore the given expression becomes 
$100-[(7\times 8+4)\div 5]$ and apply BODMAS rule as shown below:
$ \Rightarrow 100-[(56+4)\div 5]\ \Rightarrow 100-(60\div 5)\ \Rightarrow 100-12\ \Rightarrow 88$
Hence, the value of $100-[(7\times 8+4)\div 5]$ is $88$.

The value of $12\div \dfrac {1}{2}+0.5\times \dfrac {5}{2}-2$ is

  1. 23.25

  2. 12.25

  3. 13.25

  4. none


Correct Option: A
Explanation:

 

$12\div \dfrac {1}{2}+0.5\times \dfrac {5}{2}-2 = 24 + 1.25 - 2 = 23.25$

Find the value of $\displaystyle \frac{2}{1+\frac{1}{1-\frac{1}{2}}}\times\frac{3}{\frac{5}{6}of\frac{3}{2}\div 1\frac{1}{4}}$.

  1. 4

  2. 3

  3. 2

  4. 1


Correct Option: C
Explanation:

Given exp.$\displaystyle \frac{2}{1+\frac{1}{\frac{1}{2}}}\times\frac{3}{\frac{15}{12}\div \frac{5}{4}}=\frac{2}{1+2}\times\frac{3}{\frac{15}{12}\times\frac{4}{5}}=\frac{2}{3}\times\frac{3}{1}=2$

If $a$ and $ b $ are any two real numbers with opposite signs, which of the following is the greatest?

  1. $\displaystyle (a-b)^{2}$

  2. $\displaystyle (|a|-|b|)^{2}$

  3. $\displaystyle |a^{2}-b^{2}|$

  4. $\displaystyle a^{2}+b^{2}$


Correct Option: A
Explanation:

$(a-b)^2=a^2+b^2-2ab$

as a and b are of oppsite sign ab<0 and -2ab>0,it means $(a-b)^2>a^2+b^2-2|a||b|=(|a|-|b|)^2>(|a2+b^2|)>(|a^2-b^2|)$

What is the value of $((x^3-2)\div2^2)\times 4+16$?

  1. $x^3+14$

  2. $x^3-14$

  3. $-x^3+14$

  4. $x^3+16$


Correct Option: A
Explanation:

$((x^3-2)\div2^2)\times 4+16$
We need to follow BODMAS rule.
=> Brackets (parts of a calculation inside brackets always come first).
=> Orders (numbers involving powers or square roots).
=> Division.
=> Multiplication.
=> Addition.
=> Subtraction.
$=$ $((x^3-2)\div2^2)\times 4+16$
$=$ $\dfrac{x^3-2}{4}\times 4+16$
$=$ $x^3+14$

Simplify: $3x[x^2+1]-[2x(x^2+x-1)+1]-x^2$

  1. $x^3-3x^2+x+1$

  2. $x^3-3x^2+5x-1$

  3. $x^3+x^2-5x+1$

  4. $x^3+3x^2+5x-1$


Correct Option: B
Explanation:

$3x[x^2+1]-[2x(x^2+x-1)+1]-x^2$
We need to follow BODMAS rule.
=> Brackets (parts of a calculation inside brackets always come first).
=> Orders (numbers involving powers or square roots).
=> Division.
=> Multiplication.
=> Addition.
=> Subtraction.
$3x[x^2+1]-[2x(x^2+x-1)+1]-x^2$
$=$ $3x.x^2+3x.1-[2x.x^2+2x.x-2x.1+1]-x^2$
$=$ $3x^3+3x-2x^3-2x^2+2x-1-x^2$
$=$ $x^3-3x^2+5x-1$