Tag: polygons

Questions Related to polygons

Two times the interior angle of a regular polygon is equal to seven times is exterior angle. Find the interior angle of the polygon and the number of sides in it.

  1. $130^{\circ}$ and n $=$ 9

  2. $140^{\circ}$ and n $=$ 9

  3. $160^{\circ}$ and n $=$ 9

  4. $170^{\circ}$ and n $=$ 9


Correct Option: B
Explanation:

Two times the interior angle of a regular polygon is equal to seven times is exterior angle.
Each Interior angle of a polygon = $ \dfrac {180^o (n-2)}{n} $
Each Exterior angle of a polygon = $ \dfrac{360^o}{n} $
Now,
$ 2 \times \dfrac {180^o (n-2)}{n} = 7 \times  \dfrac{360^o}{n}  $
$=> n -2 = 7 $
$=> n = 9 $
Number of sides of polygon is 9.
Each Interior angle of a polygon = $ \dfrac {180^o (n-2)}{n} = \dfrac {180^o (9-2)}{9} = 140^o  $

The measurement of each angle of a polygon is $160$$^o$. The number of its sides is ?

  1. $15$

  2. $18$

  3. $20$

  4. $30$


Correct Option: B
Explanation:
Given, measure of each angle of a polygon $=160^o$
Exterior angle $= 180^o -$ Interior angle
$= 180^o - 160^o = 20^o$
$\therefore$ Number of sides $= \displaystyle \frac{360^o}{\text{Exterior angle}} = \frac{360}{20} = 18$
Therefore, number of sides of polygon are $18$.

The ratio of the measure of an exterior angle of a regular $7:2$ nonagon to the measure of one of its interior angles is:

  1. $7:2$

  2. $2:7$

  3. $4:3$

  4. $3:4$


Correct Option: B
Explanation:

Let $7a$ be the interior angle

and $2a$ be the exterior angle
Therefore, $ 7a+2a=180^{0}$
$\Rightarrow 9a=180^{0}$
$\Rightarrow a=20^{0}$
So, $2a=2\times 20$
$=40^{0}$
and $7a=7\times 20$
$=140^{0}$
For a regular polygon of $n$ sides, each exterior angle has a measure of $\dfrac{360}{n}$ degrees.

The measure of each interior angle is $140^{0}$.
Since the exterior angle of each angle has measure $40^{0}$, then the number of sides $n$.
$=\dfrac{360}{n}$
$=9$ sides.

A regular polygon is inscribed in a circle. If a side subtends an angle of $30^{\circ}$ at the centre, what is the number of its sides?

  1. $10$

  2. $8$

  3. $6$

  4. $12$


Correct Option: D
Explanation:

For a polygon of 'n' sides, the angle subtended at the centre is $ \dfrac {{360}^{o}}{n} $

Given, angle at the centre $ = {30}^{o} $
$ => \dfrac {{360}^{o}}{n}= {30}^{o} $
$ => n = 12 $

Hence, the polygon has $ 12 $ sides.

Exterior angles of a regular polygon is one-third of its interior angle. Find number of sides in polygon.

  1. 10

  2. 8

  3. 6

  4. 9


Correct Option: B
Explanation:
If we take $n$ as the number of sides of polygon and $E$ be the exterior angle and $I$ be the interior angle.

$\Rightarrow$   $E+I=180^\circ$  

According to the given question we get,
$\Rightarrow$  $E=\dfrac{1}{3} I$

$\Rightarrow$  So, $I=3E$

$\therefore$  $E+3E=180^\circ$

$\Rightarrow$  $E = 45^\circ$

$\Rightarrow$  Interior angle  $=135^\circ$

$\Rightarrow$  Interior angle $=\dfrac {(n-2)\times 180}{n}$

$\Rightarrow$  $135n=180n-360$

$\Rightarrow$  $-45=-360$

$\Rightarrow$  $n=8$

$\therefore$  Number of sides in polygon are $8$.

If the interior angle of a regular polygon exceeds the exterior angle by $ \displaystyle 132^{\circ}  $, then the number of sides of the polygon is :

  1. $15$

  2. $14$

  3. $13$

  4. $12$


Correct Option: A
Explanation:

Let the number of sides in the regular polygon be $n$

Thus each interior angle $=$ $\dfrac{(2n-4)\times 90^{\circ}}{n}$
And each exterior angle $=\dfrac{360^{\circ}}{n}$
Lets go according to question:
Therefore, $  \dfrac{(2n-4)\times 90^{\circ}}{n}-\dfrac{360^{\circ}}{n}=132^{\circ}$
$\Rightarrow 180n-360-360=132n$
$\Rightarrow 48n=720$
$\Rightarrow n=\dfrac{720}{48}=15$

Let the  formula relation the exterior angle and number of sides of a polygon be given as $nA = 360$.
The measure $A$, in degrees, of an exterior angle of a regular polygon is related to the number of sides, $n$, of the polygon by the formula above. If the measure of an exterior angle of a regular polygon is greater than $50$, what is the greatest number of sides it can have?

  1. 5

  2. 6

  3. 7

  4. 8


Correct Option: C
Explanation:

Sum of exterior angles for any polynomial is always $360$. 

Since polynomial has $n$ angles, each with exterior angle is $A$, then 
sum of exterior angles will be $nA$ 
Given, $nA = 360$ 
$\therefore A=\dfrac { 360 }{ n }$  
We are given that: $A > 50$ 
$\Rightarrow \dfrac { 360 }{ n } >50$ 
$\Rightarrow 360 > 50n$ 
$\Rightarrow n<\dfrac { 360 }{ 50 }$  
$\Rightarrow n < 7.2$ 
Hence, the greatest number of angles polygon can have is $7$.

If $B$ the exterior angle of a regular polygon of $n-sides$ and $A$ is any constant then $\cos A + \cos (A + B) + \cos (A + 2B) + .... n$ terms is equal to:

  1. $0$

  2. $\cos A$

  3. $1$

  4. $\dfrac {\sqrt {3}}{2}$


Correct Option: A
Explanation:
The sum of exterior angles of a polygon is $ 2\pi$ or $ 360^{\circ}$

If it is a regular polygon

Exterior Angles $ = \dfrac{2\pi}{n} $ 

n is no of sides

According to question

$ B = \dfrac{2\pi}{n}.$

$ \cos A + \cos (A+B) + \cos (A+2B)+ ...n+ terms $

$ = \cos A + \cos\left ( A + \dfrac{2 \pi}{n} \right )+ \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right )+...+ \cos \left ( A+ (n-2) \dfrac{2\pi}{n} \right ) + \cos \left ( A+(n-1) \dfrac{2\pi}{n} \right )$

$ \cos A+ \cos \left ( A+\dfrac{2\pi}{n} \right ) + \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right )+ ...+ \cos \left ( A+n \left ( \dfrac{2\pi}{n} \right )-2\left ( \dfrac{2\pi}{n} \right )\right ) + \cos \left ( A+n \left ( \dfrac{2\pi}{n} \right )-\dfrac{2\pi}{n}\right )$

$ = \cos A + \cos \left ( A +\dfrac{2\pi}{n} \right )+ \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right ) + ...+ \cos \left ( A+2\pi -2\left ( \dfrac{2\pi}{n} \right ) \right ) + \cos \left ( A + 2\pi- \dfrac{2\pi}{n} \right )$

$ = \cos A + \cos \left ( A+\dfrac{2\pi}{n} \right )+ \cos \left ( A+2\left ( \dfrac{2\pi}{n} \right ) \right ) + ...+ \cos\left ( A-2 \left ( \dfrac{2\pi}{n} \right ) \right )+ cos \left ( A - \dfrac{2\pi}{n} \right )$

$ \left \{ \because \cos (2\pi - \theta) = \cos \theta \right \}$

$ = \cos A + \cos (A) \, \cos \left ( \dfrac{2\pi}{n} \right )- \sin(A) . \sin\left ( \dfrac{2\pi}{n} \right )+ \cos A. \cos \dfrac{4\pi}{n}- \sin A $

$ \sin \dfrac{4\pi}{n}+ ...+ \cos A. \cos \dfrac{4\pi}{n}+ \sin A\, \sin \dfrac{4\pi}{n} + \cos A. \cos \dfrac{2\pi}{n} + \sin A . \sin \dfrac{\pi}{n}$

$ = \cos\,A + \cos\,A. \cos\dfrac{2\pi}{n}+ \cos A \,\cos\dfrac{4\pi}{n} + ... \cos A\, \cos \dfrac{4 \pi}{n} + \cos A.\cos \dfrac{2\pi}{n}.$

$ = \cos A \left \{ 1+ \cos\dfrac{2\pi}{n} + \cos \dfrac{4\pi}{n}+ ... \cos\dfrac{4\pi}{n}+ \cos\dfrac{2\pi}{n} \right \}$

$ = \cos A (1-1)$

$ =0 $

Which one of the following statements is not correct?

  1. if the exterior angle of a regular polygon is $30$ it has $12$ sides

  2. if the interior and exterior angles of a regular polygon are all equal, it is a rectangle

  3. if the exterior angle of a regular polygon is greater than its interior angle, it is an equilateral triangle

  4. in a regular pentagon, the exterior angle is half of the interior angle


Correct Option: D
Explanation:

A) Exterior angle of m-gon$=\cfrac { (m180)-(m-2)180 }{ m } $

If $m=12$, 
$\Longrightarrow $ Exterior angle$=30$.
Therefore A is correct.

B) If ABCD is a rectangle,
Interior$=$Exterior angle$={ 90 }^{ 0 }$ .
Therefore B is correct.

C) In equilateral triangle exterior angle ($120$)$>$ interior angle$60$.
Whereas in others it is less than or equal to interior angle.
Therefore C is true.

D) Exterior angle of pentagon$=72$.
Interior angle of pentagon$=108$.
Exterior angle $\neq \cfrac { 1 }{ 2 } $interior angle.
Therefore D is incorrect.

The sum of the exterior angles of a hexagon is?

  1. $360^{\circ}$

  2. $540^{\circ}$

  3. $720^{\circ}$

  4. none of these


Correct Option: A
Explanation:

Number of sides in hexagon $=6$
Sum of the interior angles of a polygon$=(n-2)\pi$
$n(Interior\ Angle)=(n-2)\pi$
$\Rightarrow $ Interior Angle $= \dfrac{4}{6}\pi$

Interior Angle $= 120^\circ$
Exterior Angle $=180- $Interior Angle
$\Rightarrow$ Exterior angle $=60^\circ$
Sum of Exterior angle $=6 \times$ Exterior Angle $=360^\circ$