Tag: methods of differentiation
Questions Related to methods of differentiation
The differential equation $\dfrac {dy}{dx}=\dfrac {1}{ax+by+c}$ where a,b,c are all non zero real number ,is
-
Linear in $y$
-
Linear in $x$
-
linear in both $x$ and $y$
-
Homogeneous equation
$\dfrac {dx}{dy}= ax+by+c$
$\dfrac {dx}{dy}-a=by+c$
Linear in $x$
If ${ x }^{ 2 }.{ e }^{ y }+2x{ ye }^{ x }+13=0$, then $\dfrac { dy }{ dx }$ is
-
$\dfrac { -2x{ e }^{ y-x }-2y\left( x+1 \right) }{ x\left( { xe }^{ y-x }+2 \right) }$
-
$\dfrac { 2x{ e }^{ x-y }+2y\left( x+1 \right) }{ x\left( { xe }^{ y-x }+2 \right) }$
-
$\dfrac { -2x{ e }^{ x-y }+2y\left( x+1 \right) }{ x\left( { xe }^{ y-x }+2 \right) }$
-
$None\ of\ these$
Differentiating w.r.t. $x$
$2xe^y+x^2e^y\dfrac{dy}{dx}+2[\dfrac{d}{dx}(xy)e^x+xye^x]=0$
$2x{e^y} + {x^2}{e^y}\dfrac{{dy}}{{dx}} + 2[\dfrac{d}{{dx}}(xy){e^x} + xy{e^x}] = 0$
$2x{e^y} + {x^2}{e^y}\dfrac{{dy}}{{dx}} + 2{e^x}[y + x\dfrac{{dy}}{{dx}} + xy] = 0$
$2x{e^y} + {x^2}{e^y}\dfrac{{dy}}{{dx}} + 2y{e^x} + 2x{e^x}\dfrac{{dy}}{{dx}} + 2xy2{e^x} = 0$
$\left( {{x^2}{e^y} + 2x{e^x}} \right)\dfrac{{dy}}{{dx}} = - \left( {2x{e^y} + 2y{e^x} + 2xy{e^x}} \right)$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {2x{e^y} + 2y{e^x} + 2xy{e^x}} \right)}}{{{x^2}{e^y} + 2x{e^x}}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {2x{e^{y - x}} + 2y + 2xy} \right)}}{{{x^2}{e^{y - x}} + 2x}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{2x{e^{y - x}} - 2y\left( {x + 1} \right)}}{{x\left( {x{e^{y - x}} + 2} \right)}}$
Find: $\dfrac{d}{{\text dx}}\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right) \,\,\,$
-
${\sec ^2}\dfrac{x}{2}$
-
$\,\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}\,$
-
$\,\,2{\sec ^2}\dfrac{x}{2}$
-
$\,\,3{\sec ^2}\dfrac{x}{2}$
Let $ y = \dfrac{1- \cos x }{\sin x}$
Derivative of ${ \log { x } }^{ \cos { x } }$ with respect to $x$ is
-
${ \log { x } }^{ \cos { x } }\left[ \cfrac { \cos { x } }{ x\log { x } } -\sin { x } \log { \left( \log { x } \right) } \right] \quad $
-
${ \log { x } }^{ \cos { x } }\left[ \cfrac { \cos { x } }{ x\log { x } } -\cos { x } \log { \left( \log { x } \right) } \right] \quad $
-
${ \log { x } }^{ \sin { x } }\left[ \cfrac { \sin { x } }{ x\log { x } } -\sin { x } \log { \left( \log { x } \right) } \right] \quad $
-
None of these
If $xe^{xy}-y=\sin x$, then $\dfrac {dy}{dx}$ at $x=0$ is
-
$0$
-
$1$
-
$-1$
-
$None\ of\ these$
$\dfrac {d}{dx}(x^{\ell n x})$ is equal to
-
$2x^{\ell n x-1}\ell n x$
-
$x^{\ell n x-1}$
-
$2/3(\ell n x)$
-
$x^{\ell n x-1}.\ell n x$
Let $lnx=u$
If $y=(tan \, x)^{(tan\, x)^{tan\,x}}, $ then at $x=\dfrac{\pi}{4}, \dfrac{dy}{dx}$ is equal to
-
0
-
3
-
2
-
None of these
The solution of the differential equation, $y\,dx + \left( {x + {x^2}y} \right)dy = 0$ is
-
$\log y = cx$
-
$ \log y- \dfrac{1}{{xy}} = c$
-
$\dfrac{1}{{xy}} - \log y = c$
-
$\dfrac{1}{{xy}} + \log y = c$
We have,
If $x=a\sin \theta$ and $y=b\cos\theta$, then $\displaystyle\frac{d^2y}{dx^2}$ is
-
$\displaystyle\frac{a}{b^2}\sec^2\theta$
-
$\displaystyle\frac{-b}{a}\sec^2\theta$
-
$\displaystyle\frac{b}{a^2}\sec^3\theta$
-
$\displaystyle\frac{-b}{a^2}\sec^3\theta$
Given, $x=a\sin\theta$ and $y=b\cos\theta$
On differentiating w.r.t.$\theta$, we get
$\displaystyle\frac{dx}{d\theta}=a\cos\theta$
and $\displaystyle\frac{dy}{d\theta}=-b\sin \theta$
$\Rightarrow \displaystyle\frac{dy}{dx}=\frac{dy/d\theta}{dx/d\theta}=-\frac{b}{a}\tan\theta$
Again, differentiating w.r.t. $x$, we get
$\displaystyle\frac{d^2y}{dx^2}=-\frac{b}{a}sec^2\theta\cdot\frac{d\theta}{dx}$
$\Rightarrow \displaystyle\frac{d^2y}{dx^2}=-\frac{b}{a}sec^2\theta\cdot\frac{1}{a\cos\theta}$
$=-\displaystyle\frac{b}{a^2}sec^3\theta$
The set of all points, where the function $f(x) = \sqrt {1 - e^{-x^{2}}}$ is differentiable, is
-
$(0, \infty)$
-
$(-\infty, \infty)$
-
$(-\infty, 0) \cup (0, \infty)$
-
$(-1, \infty)$
Given that
- ← Previous
- 1
- 2
- 3
- 4
- Next →