Tag: basic concepts of vector
Questions Related to basic concepts of vector
If the vector $\bar{c}, \bar{a} = x\bar{i}+y\bar{j}+ z\bar{k}, \bar{b}= \bar{j}$ are such that $\bar{a}, \bar{c}, \bar{b}$ from R.H.S then $\bar{c}$ =
If $a,b,c$ are unit vectors, then the maximum value of $|a+2b|^{2}+|b+3c|^{2}+|c+4a|^{2}$ is
If $\displaystyle \bar{a}+p\bar{b}+q\bar{c}=0 $ then
If the vector $a, b$ and $c$ form the sides $BC, CA $ and $AB $ and equal magnitute respectively of a triangle $ABC,$ then
If $\displaystyle a\cdot b=a\cdot c$ and $\displaystyle a\times b=a\times c,$ then
Let $\displaystyle \vec{a}=\hat{i}+\hat{j}$ & $\displaystyle \vec{b}=2\hat{i}+\hat{j}$ The point of intersection of the lines $\displaystyle \vec{r}\times \vec{a}=\vec{b}\times \vec{a}& \vec{r}\times \vec{b}=\vec{a}\times \vec{b}$ is
Let $\displaystyle \vec{A}=2\vec{i}+\vec{k},\,\vec{B}=\vec{i}+\vec{j}+\vec{k},$ and $\displaystyle \vec{C}=4\vec{i}-3\vec{j}+7\vec{k}$ Determine a vector $\displaystyle \vec{R}$satisfying $\displaystyle \vec{R}\times \vec{B}=\vec{C}\times \vec{B}$ and $\displaystyle \vec{R}.\vec{A}=0$
Unit vector $\vec r$ which satisfies $\vec r \times \vec b = \vec r \times \vec c$ where $\vec b = \widehat i + 2 \widehat j + \widehat k $ & $ \vec c = 3 \widehat i + 2 \widehat k $, is
Let $\vec a = \widehat i + \widehat j$ and $\vec b = 2 \widehat i - \widehat k$, then the point of intersection of lines $\vec r \times \vec a = \vec b \times \vec a$ and $\vec r \times \vec b = \vec a \times \vec b$ is
If $\overline{a}\times\overline{b}=\overline{b}\times\overline{c}$, then
- ← Previous
- 1
- 2
- 3
- Next →