Tag: vectors from a geometric viewpoint
Questions Related to vectors from a geometric viewpoint
If three vectors $\overline{a},\overline{b},\ \overline{c}$ are such that $\overline{a}\neq 0$, $\overline{a}\times\overline{b}=2\overline{a}\times\overline{c},\ |\overline{a}|=|\overline{c}|=1,\ |\overline{b}|=4$ and the angle between $|\overline{b}|$ and $|\overline{c}|$ is $\displaystyle \cos^{-1}\frac{1}{4}$, then $\overline{b}-2\overline{c}=\lambda\overline{a}$ where $\lambda$ is equal to
If $\vec{a}\times\vec{b}=\vec{c}\times\vec{d}$ and $\vec{a}\times\vec{c}=\vec{b}\times\vec{d}$, then
If $\vec {a},\vec {b},\ \vec {c}$ are non-zero non-collinear vectors such that $\vec {a}\times\vec {b}=\vec {b}\times\vec {c}=\vec {c}\times\vec {a}$ , then $\vec {a}+\vec {b}+\vec {c}=$
If $\vec {a}\times \vec {b}=\vec {c}\times \vec {d},\vec {a}\times \vec {c}=\vec {b}\times \vec {d}$, then
If $\vec {a}$ and $\vec {b}$ are not perpendicular to each other and $\vec {r}\times\vec {a}=\vec {b}\times\vec {a},\ \vec {r}.\vec {c}=0$, then $\vec {r}$ is equal to
If $a$ and $b$ are two unit vectors inclined at an angle $\dfrac { \pi }{ 3 }$, then $\left{ a\times \left( b+a\times b \right) \right} \cdot b$ is equal to
Let $\vec{\lambda }=\vec{a}\times \left ( \vec{b}+\vec{c} \right )$, $\vec{\mu }=\vec{b}\times \left ( \vec{c}+\vec{a} \right )$ and $\vec{\nu }=\vec{c}\times \left ( \vec{a}+\vec{b} \right )$, then
Let $\vec{r}\times \vec{a}=\vec{b}\times \vec{a}$ and $\vec{r}.\vec{c}=0$, where $\vec{a}\vec{b}\neq 0$, then $\vec{r}$ is equal to
If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are any three vectors in space then $\left ( \overrightarrow{c}+\overrightarrow{b} \right )\times \left ( \overrightarrow{c}+\overrightarrow{a} \right ).\left ( \overrightarrow{c}+\overrightarrow{b}+\overrightarrow{a} \right )$ is equal to
- ← Previous
- 1
- 2
- 3
- Next →