Tag: telescopic summation for infinte series
Questions Related to telescopic summation for infinte series
Let $a-i=i+\dfrac{1}{i}$ for $i=1, 2,..., 20$. Put $p=\dfrac{1}{20}(a _1+n _2+...+n _{20})$ and $q=\dfrac{1}{20}\left(\dfrac{1}{a _1}+\dfrac{1}{a _2}+...+\dfrac{1}{a _{20}}\right)$. Then?
The sum $\displaystyle\sum _{ 0\le i }^{ }{ \sum _{ j\le 10 }^{ }{ \left( _{ }^{ 10 }{ { C } _{ j } } \right) \left( _{ }^{ j }{ { C } _{ i } } \right) } } $ is equal to
What is the value of $\frac {1}{1+\sqrt 2}+\frac {1}{\sqrt 2+\sqrt 3}+\frac {1}{\sqrt 3+\sqrt 4}.....$ upto 15 terms?
$3, 7, 13, 21, 31, .....$
The sum of infinity of the series $\displaystyle 1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+$..... is
$1^2+2^2+3^2r^2+4^2r^3+.....$ to $\infty$ is equal to
Find the sum of the first 25 terms of the A.P.: 2 + 5 + 8 + 11 + ............ (use Gauss method)
$73, 71, 67, 61, 59, ....$
The value of $ \displaystyle \left ( 1-\dfrac{1}{3} \right )\left ( 1-\dfrac{1}{4} \right )\left ( 1-\dfrac{1}{5} \right )...\left ( 1-\dfrac{1}{n} \right ) $ is equal to
- ← Previous
- 1
- 2
- 3
- Next →