Tag: introduction to vector algebra

Questions Related to introduction to vector algebra

If $ \vec{a} $ and $ \vec{b} $ are two non-collinear unit vectors such that $ |\vec{a}+\vec{b}| = \sqrt{3}, $ find $(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) $ 

  1. $ +\dfrac{11}{2} $

  2. $ -\dfrac{13}{2} $

  3. $ -\dfrac{11}{2} $

  4. $ +\dfrac{13}{2} $


Correct Option: C
Explanation:

Given $ |\vec{a}+\vec{b}| = \sqrt{3}, $

Now squaring both sides we get,

$(\vec{a}+\vec{b}).(\vec{a}+\vec{b})=3$ [ Since$|\vec{a}|^2=\vec{a}.\vec{a}$ 
or, $|\vec{a}|^2+2\vec{a}.\vec{b}+|\vec{b}|^2=3$ [ Since 

$\vec{a}.\vec{b}=\vec{b}.\vec{a}$ ]
or, $\vec{a}.\vec{b}=\dfrac{1}{2}$.....(1). [ Since $\vec{a},\vec{b}$ are unit vectors then $|\vec{a}|=1=|\vec{b}|$ ]

Now,
$(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) $ 
$=6|\vec{a}|^2-13\vec{a}.\vec{b}-5|\vec{b}|^2$

$=6-\dfrac{13}{2}-5$ [ Using (1)]
$=-\dfrac{11}{2}$.

Which of the following can represent a vector?

  1. The length of the distance between the points $(0,0)$ and $(2,7)$

  2. A line segment beginning at $(2,7))$ and ending at $(0,0)$

  3. The length of the distance between the points $(2,7)$ and $(0,0)$

  4. A line segment beginning at $(0,0)$ and ending at $(2,7)$


Correct Option: B,D
Explanation:
A vector is a quantity that can be described as having both magnitude and direction.
The length of the distance between any two points is a magnitude with no direction, so it can't represent a vector.
A line segment beginning at a certain point and ending at another can represent a vector. The magnitude of the vector is the distance between the points, and its direction is the direction from the initial point to the terminal point.
The following can represent a vector:
A line segment beginning at $(0,0)$ and ending at $(2,7)$.
A line segment beginning at $(2,7)$ and ending at $(0,0)$

Direction of zero vector

  1. does not exist

  2. towards origin

  3. indeterminate

  4. None of these


Correct Option: C
Explanation:

As, zero vector represents a point.
Direction is indeterminate.
Hence, option C.

Which will result in a vector?

  1. Product of a scalar and a scalar.

  2. Product of a scalar and a vector.

  3. Addition of two vectors

  4. None of these


Correct Option: B,C
Explanation:
Let two vectors
$\vec{a}=\hat{i}$ 
$\vec{b}=\hat{i}+\hat{j}$
Addition of both vector 
$\vec{a}+\vec{b}=\hat{i}+\hat{i}+\hat{j}$
$\vec{a}+\vec{b}=2\hat{i}+\hat{j}$
Here we get vector by addition of both vectors 
hence option C is correct

let two scalar $\lambda=2,\mu=1$
$\lambda\times\mu=2\times1=2$
SO from here we get a scalar quantity Hence 
Option A is not correct 

$\lambda\times\vec{a}=\lambda\hat{i}$
Here vector quantity is obtained 
hence option B is correct

What is the value of $p$ for which the vector $p\left( 2\hat { i } -\hat { j } +2\hat { k }  \right)$ is of $ 3$ units length?

  1. $1$

  2. $2$

  3. $3$

  4. $6$


Correct Option: A
Explanation:

length of vector $a\hat { i } +b\hat { j } +c\hat { k } $ from origin is $\sqrt { a^2+b^2+c^2 } $ 

So $\sqrt { {(2p)}^2+{(-p)}^2+{(2p)}^2 } =\sqrt { 9p^2 }=3p $
Length is $3$ units given. 
$\therefore 3p=3\implies p=1$
Hence, A is correct.

If $\vec{x}$ and $\vec{y}$ be unit vectors and $\displaystyle |\vec{z}| = \dfrac{2}{\sqrt 7}$ such that $\vec{z} + (\vec{z} \times \vec{x}) = \vec{y}$ and $\theta$ is the angle between $\vec{x}$ and $\vec{z}$, then the value of sin $\theta$ is

  1. $\displaystyle \dfrac{1}{2}$

  2. $1$

  3. $\displaystyle \dfrac{\sqrt 3}{2}$

  4. $\displaystyle \dfrac{\sqrt 3 -1}{2 \sqrt 2}$


Correct Option: C
Explanation:

$|\vec{z} + (\vec{z} \times \vec{x}) | = | \vec{y}|^2 \,\,\,\,\,\Rightarrow$
$|\vec{z}|^2+|\vec{z}|^2 |\vec{x}|^2 \,sin^2\,\theta =1$
$\displaystyle \Rightarrow \,|z| = \frac{1}{\sqrt {1 + sin^2\,\theta}} = \frac{2}{\sqrt 7} \Rightarrow sin\,\theta = \frac{\sqrt 3}{2}$