Tag: mean

Questions Related to mean

The following table gives the per day income of 50 pupils. Find the arithmetic mean of their per day income.

Income/day (Rs) 70-74 74-78 78-82 82-86 86-90
No. of people    8    10      11    17    4


  1. $75.92$

  2. $79.92$

  3. $80.92$

  4. None of these


Correct Option: B
Explanation:

Consider the following table, to calculate mean:

 $ci$  $f _i$  $x _i$  $f _ix _i$
70-74  8  72  576
 74-78  10  76  760
 78-82  11  80  880
 82-86  17  84  1428
 86-90  4  88  352
 $N=\Sigma f _i=50$          
 $\Sigma f _ix _i=3996$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{3996}{50}=79.92$

Hence, option $B$ is correct.

Compute the missing frequencies $'f _1'$ and $'f _2'$ in the following data, if the mean is $166\frac {9}{26}$ and the sum of the observation is 52.

Classes Frequency
140-150 5
150-160 $f _1$
160-170 20
170-180 $f _2$
180-190 6
190-200 2
Total 52
  1. $f _1=7, f _2=3$

  2. $f _1=10, f _2=6$

  3. $f _1=9, f _2=8$

  4. None of these


Correct Option: D
Explanation:

Given:- $\Sigma f = 52 $

 classes frequency$ (f _i) $  $ x _i = \cfrac{\text{lower limit + upper limit}}{2} $  $ x _i f _i $ 
140-150   145  725
150-160  $ f _1 $  155  $ 155f _1 $ 
 160-170 20  165  3300 
170-180  $ f _2 $  175  $175f _2$ 
180-190  185  1110 
190-200  2 195  390 
  $ \Sigma f _i = 52 $    $ \Sigma x _i f _i = 5525 + 155f _1 + 175f _2 $ 

Also $ \Sigma f _i = 33  f _1 + f _2 = 52 $

$ \Rightarrow f _1 + f _2 = 19\longrightarrow eq.(i) $
Now Mean = $ \cfrac{\Sigma x _i f _i}{\Sigma f _i} = \cfrac{5525 + 155f _1 + 175f _2}{52} $ 
Given:- Mean = $ \cfrac{4325}{26} $
$ \Rightarrow \cfrac { 5525+155f _{ 1 }+175f _{ 2 } }{ 52 } =\cfrac { 4325 }{ 26 } $
$ \Rightarrow 5525 + 155f _1 + 175f _2 = 8650 $
$ \Rightarrow 155f _1 + 175f _2 = 8650 - 5525 = 3125$
$ 31f _1 + 35f _2 = 625 \longrightarrow eq.(ii) $
from eq. (i) $ & $ (ii), we get
$ f _2 = 9 \Rightarrow f _1 = 10 $
D) None of these

In a frequency dist. if $\displaystyle d _{i}$ is deviation of variates from a number e and mean = $\displaystyle e+\frac{\Sigma f _{i}d _{i}}{\Sigma f _{i}}$, then e is

  1. Lower limit

  2. Assumed mean

  3. Number of observation

  4. Class interval


Correct Option: B
Explanation:

Formula of finding Mean using step deviation method is

mean = $\displaystyle e+\frac{\Sigma f _{i}d _{i}}{\Sigma f _{i}}$
where,
$e=$Assumed Mean
$\Sigma f _id _i=$Sum of all $frequency(f _i)\times deviation(d _i)$
$\Sigma f _i=$ Sum of all frequencies
Hence the correct answer is assumed mean.

If the mean of four observations is $20$ and when a constant  is added to each observation the mean becomes $22$ The value of $c$ is?

  1. $-2$

  2. $2$

  3. $4$

  4. $6$


Correct Option: B
Explanation:

$\displaystyle\text{Let } x _1,x _2,x _3,x _4\text{ be four observations.}$
$\displaystyle\text{According to question}$
$\displaystyle \frac{ x _1+x _2+x _3+x _4}{4}=20$
$\Rightarrow \displaystyle { x _1+x _2+x _3+x _4}=80$
$\displaystyle\text{After adding 'c' to each observation the new A.M becomes 22.}$
$\Rightarrow \displaystyle \frac{ (x _1+c)+(x _2+c)+(x _3+c)+(x _4+c)}{4}=22$
$\Rightarrow \displaystyle  (x _1+x _2+x _3+x _4)+4c=88$
$\Rightarrow \displaystyle  80+4c=88$
$\Rightarrow \displaystyle  4c=8$
$\Rightarrow \displaystyle  c=2$
Options B is correct.

HM of 3 and 5 is

  1. $\displaystyle\dfrac{15}{4}$

  2. $\displaystyle\dfrac{15}{8}$

  3. $\displaystyle\dfrac{3}{4}$

  4. $\displaystyle\dfrac{5}{8}$


Correct Option: A
Explanation:

Harmonic mean of two numbers $ a $ and $ b = \dfrac {2ab}{a+b} $

So, harmonic mean of $ 3\ and\  5 $ is $ \dfrac {2 \times 3 \times 5}{3+5} = \dfrac {15}{4} $

GM of 4 and 64 is

  1. 32

  2. 8

  3. 16

  4. 24


Correct Option: C
Explanation:

Geometric mean or GM of two numbers $ a $ and $ b $ is $ \sqrt {ab} $
So, GM of $ 4\  and\  64 $ is $ \sqrt {4 \times 64} = 2 \times 8 = 16 $

The harmonic mean of 20 and 30 is

  1. 25

  2. 28

  3. 26

  4. 24


Correct Option: D
Explanation:

Harmonic mean of two numbers $ a $ and $ b = \dfrac {2ab}{a+b} $

So, harmonic mean of $ 20\  and\  30 $ is $ \dfrac {2 \times 20 \times 30}{20+30} = 24 $

Find the sum of 5 geometric means between $\displaystyle\frac{1}{3}$ and 243, by taking common ratio positive.

  1. 121

  2. 126

  3. 81

  4. 111


Correct Option: A
Explanation:

Given that, there are $5$geometric means between the two numbers $\dfrac{1}{3}$and $243$ , we have to find $7=\left( 5+2 \right)$

terms in G.P. of which $\dfrac{1}{3}$ is the first, and$243$ the seventh. Let r be the common ratio;

then $243$  = the seventh term =$\left( \dfrac{1}{3} \right){{r}^{\left( 7-1 \right)}}=\dfrac{1}{3}.{{r}^{6}}$.

 

Therefore,${{r}^{6}}=3.x.243={{3.3.3}^{4}}={{3}^{6}}$;

whence $r=6$

and the series is$\dfrac{1}{3},1,3,9,27,81,243$

(using the standard form a, ar, ar², ar³ …… of a G.P. ).

 

Now, the geometric mean between two given quantities$a,b=\sqrt{ab}$

 

Therefore, the required geometric means are,

$ \sqrt{\dfrac{1}{3}.x.3},\sqrt{1.x.9},\sqrt{3.x.27},\sqrt{9.x.82},\sqrt{27.x.243} $$

$ =1,3,9,27,81 $$

 

Therefore, the sum of the $5$  geometric means is

$1+3+9+27+81=121$

 

Hence, this is the answer.

 

The geometric mean of $10$ observations on a certain variable was calculated as $16.2$. It was later discovered that one of the observations was wrongly recorded as $12.9$; infact it was $21.9$. The correct geometric mean is:

  1. $\left (\dfrac {(16.2)^{9}\times 21.9}{21.9}\right )^{1/10}$

  2. $\left (\dfrac {(16.2)^{10}\times 21.9}{21.9}\right )^{1/10}$

  3. $\left (\dfrac {(16.2)^{10}\times 21.9}{12.9}\right )^{1/10}$

  4. $\left (\dfrac {(16.2)^{11}\times 21.9}{21.9}\right )^{1/11}$


Correct Option: A
Explanation:

Geometric mean of $n$ numbers $=(\prod _{i=1}^{n} x _{i})^{1/n}$

Here, $(\prod _{i=1}^{10} x _{i})^{1/10}=16.2$
$\Rightarrow (\prod _{i=1}^{10} x _{i})=(16.2)^{10}$
Now suppose $x _{10}$ was wrongly recorded, so we rewrite above relation as $(\prod _{i=1}^{9} x _{i})\times x _{10}=(16.2)^{10}$
$\Rightarrow (\prod _{i=1}^{9} x _{i})=\dfrac{(16.2)^{10}}{x _{10}}$
Now, the correct value is $21.9$, so multiply both sides by $21.9$ and also put value of $x _{10}=12.9$ in above equation
$(\prod _{i=1}^{9} x _{i})\times 21.9=\dfrac{(16.2)^{10}}{12.9}\times 21.9$
$=$ Correct Geometric mean=$((\prod _{i=1}^{9} x _{i})\times 21.9)^{1/10}$
$=\left(\dfrac{(16.2)^{10}}{12.9}\times 21.9\right)^{1/10}$
$=\left(\dfrac{(16.2)^{10}\times 21.9}{12.9}\right)^{1/10}$
Hence, $(C)$ is correct.

The harmonic mean of the roots of equation $(5+\sqrt {2})x^{2}-(4+\sqrt {5})x+8+2\sqrt {5}=0$ is

  1. $2$

  2. $4$

  3. $6$

  4. $none\ of\ these$


Correct Option: B
Explanation:

$\begin{array}{l} \left( { 5+\sqrt { 2 }  } \right) { x^{ 2 } }-\left( { 4+\sqrt { 5 }  } \right) x+8+2\sqrt { 5 } =0 \ a=5+\sqrt { 2 }  \ b=-\left( { 4+\sqrt { 5 }  } \right)  \ c=8+2\sqrt { 5 }  \ Harmonic\, \, mean\, \, of\, \, \lambda ,\beta  \ =\frac { { 2\lambda \beta  } }{ { \lambda +\beta  } }  \ \lambda \beta =\frac { c }{ a } =\frac { { 8+2\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  \ \lambda +\beta =\frac { { -b } }{ a } =\frac { { 4+\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  \ Harmonic\, \, mean=\,  \ \frac { { 2\frac { { \left( { 8+2\sqrt { 5 }  } \right)  } }{ { 5\sqrt { 2 }  } }  } }{ { \frac { { 4+\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  } }  \ =\frac { { 2\left( { 8+2\sqrt { 5 }  } \right)  } }{ { 4+\sqrt { 5 }  } }  \ =4\, \, \,  \end{array}$