Tag: geometric and harmonic mean

Questions Related to geometric and harmonic mean

The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency $\displaystyle f _{1}$ and $\displaystyle f _{2}$.

Class 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 5 $\displaystyle f _{1}$ 10 $\displaystyle f _{2}$ 7 8
  1. $5, 8$

  2. $6, 12$

  3. $8, 11$

  4. $8, 12$


Correct Option: D
Explanation:
Class       Frequency(f)  ClassMark (x)         fx
0-20         5      10         50
20-40     ${f} _{1} $      30       $ 30{f} _{1} $
40-60         10       50          500
60-80      ${f} _{2} $        70        $ 70{f} _{2} $
80-100          7         90          630
100-120           8         110           880
Total $30 + {f} _{1} +{f} _{2} $   $ 2060  + 30{f} _{1}+70{f} _{2} $

Given $ 30 + {f} _{1} +{f} _{2} = 50 $
$ => {f} _{1} +{f} _{2} = 20 $   -- (1)

Given, Mean $ = \cfrac { \sum { fx }  }{ \sum { f }} =62.8 $
$ => \cfrac { 2060  + 30{f} _{1}+70{f} _{2}}{30 + {f} _{1} +{f} _{2}} = 62.8 $

$ =>  2060  + 30{f} _{1}+70{f} _{2} = 1884 + 62.8{f} _{1} + 62.8{f} _{2} $ 

$ 32.8{f} _{1} - 7.2{f} _{2} =176 $

=> $ 8.2{f} _{1} - 1.8{f} _{2} = 44 $

=> $ 4.1{f} _{1} - 0.9{f} _{2} = 22 $ -- (2)

Solving both equations 1, 2, we get
$ {f} _{1} = 8, {f} _{2} = 12 $