Tag: work, energy and power

Questions Related to work, energy and power

A weight lifter lifts $300\ kg$ from the ground to a height of $2$ meter in $3$ seconds. The average power generated by him is:-

  1. $5880\ watt$

  2. $4410\ watt$

  3. $2205\ watt$

  4. $1960\ watt$


Correct Option: D

Human heart pumps $70\ cc$ of blood at each beat against a pressure of $125\ mm$ of $Hg$. If the pulse frequency is $72$ per minute, the power of the heat is nearly.

  1. $1.2\ W$

  2. $1.4\ W$

  3. $1.6\ W$

  4. $1.8\ W$


Correct Option: B

A force F acting on a body depends on its displacement $S$ as $F \propto S^{1/3}$. The power delivered by $F$ will depend on displacement as:

  1. $S^{2/3}$

  2. $S^{-5/3}$

  3. $S^{1/2}$

  4. $S^0$


Correct Option: A
Explanation:

We know Power=$\dfrac{work \ done}{time}$

Also work done = Force $\times$displacement

As given $F \ \alpha \ {S}^{1/3}$

$F=KS^{ 1/3 }$------(1) (where $K$= constant of proportionality)

Now Power= $\dfrac{F \times S}{time}$----(2)
Putting value of 1 in 2 we get 

$P= {\dfrac{KS^{\dfrac{2}{3}}}{t}}$

An engine of ine metric ton is going up an inclined plane, 1 in 2 at the rate of 36 kmph. If the coefficient of friction is $1/ \sqrt{3}$, the power of engine is 

  1. 9.8W

  2. 98W

  3. 980W

  4. 98kW


Correct Option: D

A train of mass $6 \times 10^2$ metric tones is pulled by a locomotive. The speed of the train will be $36 \,kmhr^{}-1$. The locomotive pulls the train on the train on the level track, whose mass is $125$ metric tones. The force of friction acts on the locomotive and the train is $1 \times 10^1$ newton per metric tonne. Calculate the power of the locomotive.

  1. 72500

  2. 6000

  3. 5000

  4. 4000


Correct Option: A
Explanation:

$m = 600$
$m\ell = 125$
$m \,net = 725$
$f = \dfrac{10}{tan}$
$t _{net} = 10 \times 125$

$V = 36 \,km/h = 36 \times \dfrac{5}{18} m/s$

$P = t _{net} \times V = 72500 \,W$

The power of water pump is The power of water pump is  $4kW.$  If  $\left( g=10{ m }{ { s }^{ -2 } } \right) ,$  the amount of water it can raise in $1$ minute to a height of $20 m$  is then

  1. $100$ litre

  2. $1000$ litre

  3. $1200$ litre

  4. $2000$ litre


Correct Option: C
Explanation:

Given that,

Power, $P=4\,kW=4000\,W$

Height, $h=20\,m$

Time, $t=60\,\sec $

$ power=\dfrac{work}{time} $

$ 4000=\dfrac{mgh}{t} $

$ 4000=\dfrac{m\times 10\times 20}{60} $

$ m=1200\,Kg $

The pump can raise 1200 litre in one minute

An object of mass accelerates uniformly from rest to a speed $v _f$ in time $t _f$ Then the instantaneous power delivered to the object,as a function of time $t$ is -

  1. $mt\left(\dfrac{{v _f}^2}{t _f}\right)$

  2. $mt\dfrac{v _f}{t _f}$

  3. $\dfrac{1}{2}mt^2\left(\dfrac{v _f}{t _f}\right)^2$

  4. $\dfrac{1}{2}mt^2\left(\dfrac{v _f}{t _f}\right)$


Correct Option: A

A force applied by the engine of a train of mass 2.05 x $10^{6} kg$ changes its velocity from 5 $ms^{-1}$ to 25  $ms^{-1}$ in 5 minutes. The power of the engine is then

  1. 1.025 MW

  2. 2.05 MW

  3. 5 MW

  4. 6 MW


Correct Option: B
Explanation:

Given that,

Mass of train, $m=2.05\times {{10}^{6}}\,Kg$

Time, $t=5\,\min utes=300\,s$

$ v=25\,m/s $

$ u=5\,m/s $

Acceleration,

$ a=\dfrac{v-u}{t} $

$ a=\dfrac{25-5}{300} $

$ a=\dfrac{2}{30}=\dfrac{1}{15}\,m/{{s}^{2}} $

Using equation of motion,

$ {{v}^{2}}-{{u}^{2}}=2as $

$ {{(25)}^{2}}-{{(5)}^{2}}=2\times \dfrac{1}{15}\times s $

$ s=4500\,m $

Power,

$ P=\dfrac{work\,\,done}{time} $

$ P=\dfrac{F\times d}{t} $

$ P=\dfrac{m\times a\times s}{t} $

$ P=\dfrac{2.05\times {{10}^{6}}\times 1\times 4500}{15\times 300} $

$ P=2.05\times {{10}^{6}}\,W $

$ P=2.05\,MW $

A motor lifts $100 kg$ of water in $2 min$ from a well of $60m$ depth then the electric power of the motor is$(Taken g=10 m/s^2)$

  1. $1000 W$

  2. $750 W$

  3. $1200 W$

  4. $500W$


Correct Option: D
Explanation:

A motor lifts $=100kg$ of water

Time $=2min=2\times60=120s$
Depth$=60m$ depth then,
electric power of the motor$=?$
Taking $=10m/s^2$
$P=Power=\cfrac{mgh}{t}\ \quad=\cfrac{100\times10\times60}{120}\ \quad=500W$

A force $'F'$ accelerates a block of mass $'m'$ along a straight line to velocity $'v'$ from rest and displace it through a distance $'s'$. What is the average power developed?

  1. $\dfrac {v^{2}}{2F}$

  2. $Fv$

  3. $\dfrac {mv^{2}}{2s}$

  4. $\dfrac {Fv}{2}$


Correct Option: D