Tag: combinatorics and mathematical induction

Questions Related to combinatorics and mathematical induction

The number of arrangements of ${ A } _{ 1 },{ A } _{ 2 },\dots ,{ A } _{ 10 }$ in a line so that  ${ A } _{ 1 }$ is always above than ${ A } _{ 2 }$. Is

  1. $2x10!$

  2. $\dfrac { 1 }{ 2 } \times 10!$

  3. $^{ 10 }{ P _{ 2 } }$

  4. $^{ 10 }{ C _{ 2 } }$


Correct Option: A

If $^{2n+1}P _{n-1}: ^{2n-1}P _n = 3 : 5$, then $n$

  1. $n = 2$

  2. $n = 3$

  3. $n = 4$

  4. $n = 5$


Correct Option: C
Explanation:

  Given $^{2n+1}P _{n-1}: ^{2n-1}P _n = 3 : 5$ which can be further simplified as
$ \displaystyle \frac {\frac { (2n+1)! }{ (n+2)! }  }{ \frac { (2n-1)! }{ (n-1)! }  }= \frac { 3 }{ 5 } $
$\Rightarrow \displaystyle \frac {(2n+1)(2n)}{(n+2)(n+1)(n)} = \displaystyle\frac{3}{5} $
$\Rightarrow $ $3{n}^{2}-11n-4=0$ .
On solving this quadratic equation we get roots as  $ 4 $ and $ -\displaystyle \frac{1}{3} $.
Since $n$ is an integer,$n=4$.

The number of ways od arranging 9 persons around a circle of there are two other persons between two particular persons is 

  1. $2\times (7!)$

  2. $3\times 7!$

  3. $9\times ^{ 8 }{ P } _{ 2 }$

  4. $4\times 7!$


Correct Option: A

The number of 7 digit numbers which can be formed using the digits 1,2,3,2,3,3,4 is _.

  1. 420

  2. 840

  3. 2520

  4. 5040


Correct Option: A

There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P/Q has the value equal to :

  1. $^{ n }{ P } _{ { 2 }^{ - } }\quad ^{ m }{ P } _{ { m }^{ - } }\quad (n-2)!$

  2. $^{ m }{ P } _{ { 2 }^{ - } }\quad ^{ n }{ P } _{ { n }^{ - } }\quad (n-2)!$

  3. $^{ n }{ P } _{ { 2 }^{ - } }\quad ^{ n }{ P } _{ { n }^{ - } }\quad (m-2)!$

  4. none


Correct Option: A

Exponent of $4$ in $80\ !$ is

  1. $26$

  2. $77$

  3. $39$

  4. $38$


Correct Option: A
Explanation:

Exponent of $4$ is $80!$ is

$[\cfrac{80}{4}]+[\cfrac{80}{4^2}]+[\cfrac{80}{4^3}]=20+5+1=26$

If $^{n}P _{5}=9 \times ^{n-1}P _{4}$, then the value of $n$ is 

  1. $6$

  2. $8$

  3. $5$

  4. $9$


Correct Option: A

In the word $ENGINEERIGNG if all $Es$ are not together and $Ns$ come together then number of permutations is

  1. $\dfrac{9!}{2!2!}-\dfrac{7!}{2!2!}$

  2. $\dfrac{9!}{3!2!}-\dfrac{7!}{2!2!}$

  3. $\dfrac{9!}{3!2!2!}-\dfrac{7!}{2!2!2!}$

  4. $\dfrac{9!}{3!2!2!}-\dfrac{7!}{2!2!}$


Correct Option: A

There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P/Q has the value equal to :

  1. $^{ n }{ P } _{ 2^{ . } }\quad ^{ m }{ P } _{ { m }^{ . } }(n-2)!$

  2. $^{ m }{ P } _{ 2^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(n-2)!$

  3. $^{ m }{ P } _{ 2^{ . } }\quad ^{ n }{ P } _{ { n }^{ . } }(n-2)!$

  4. none


Correct Option: A

If $3.^{n _{1}-n _{2}}P _{2}=^{n _{1}+n _{2}}P _{2}=90$, then the ordered $(n _{1},n _{2})$ is:

  1. $(8,2)$

  2. $(7,3)$

  3. $(16,8)$

  4. $(9,2)$


Correct Option: A