Tag: trigonometric identities

Questions Related to trigonometric identities

$\dfrac{\cos{20}^{o}+8\sin{70}^{o}\sin{50}^{o}\sin{10}^{o}}{{\sin}^{2}{80}^{0}}$ is equal to:

  1. $1$

  2. $2$

  3. $\dfrac{3}{4}$

  4. $\none$


Correct Option: A

The value of expression $\dfrac { 2\left( \sin{ 1 }^{ o }+\sin{ 2 }^{ o }+\sin{ 3 }^{ o }+.....+\sin{ 89 }^{ o } \right)  }{ 2\left( \cos{ 1 }^{ o }+\cos{ 2 }^{ o}+......+\cos{ 44 }^{ o } \right) +1 }$ equals

  1. $\sqrt{2}$

  2. $1/\sqrt{2}$

  3. $1/2$

  4. $0$


Correct Option: A

${\cos}^{2}{73}^{o}+{\cos}^{2}{47}^{o}+\cos{73}^{o}\cos{47}^{o}=.$

  1. $\dfrac{3}{4}$

  2. $-\dfrac{3}{4}$

  3. $\dfrac{4}{3}$

  4. $-\dfrac{4}{3}$


Correct Option: A

$\dfrac { \cos{ 13 }^{ o }-\sin{ 13 }^{ o } }{ \cos{ 13 }^{ o }+\sin{ 13 }^{ o } } +\dfrac { 1 }{ \cot{ 148 }^{ o } }$ is equal to

  1. $1$

  2. $-1$

  3. $0$

  4. $\dfrac { 1 }{ 2 } $


Correct Option: C
Explanation:

$\dfrac{\cos 13 - \sin 13}{\cos 13 + \sin 13} + \dfrac{1}{\cot 148}$


$=\dfrac{\cos 13 (1 - \tan 13)}{\cos 13 (1 + \tan 13)} + \dfrac{1}{\cot (180 - 32)}$


$=\dfrac{\tan 45 - \tan 13}{1 + \tan 45 \tan 13} + \dfrac{1}{(-\cot 32)}$

$=\tan (45 - 13) - \tan 32$

$=\tan (32) - \tan 32$

$=0$

The value of $\sqrt { 3 } tan{ 10 }^{ 0 }+\sqrt { 3 } tan{ 20 }^{ 0 }+tan{ 10 }^{ 0 }tan{ 20 }^{ 0 }$ is ___________.

  1. $-1$

  2. $0$

  3. $1$

  4. $2$


Correct Option: C
Explanation:

$\tan (30) = \tan (20 + 10)$


$\dfrac{1}{\sqrt{3}} = \tan 30 = \dfrac{\tan 20 + \tan 10}{1 - \tan 20 \tan 10}$


$1 - \tan 20 \tan 10 = \sqrt{3} (\tan 20 + \tan 10)$

$\sqrt{3} \tan 20 + \sqrt{3} \tan 10 + \tan 10 \tan 20 = 1$

If $sin(A-B)=\frac { 1 }{ 2 } ,cos(A+B)=\frac { 1 }{ 2 } ,{ 0 }^{ 0 }<A+B\le { 90 }^{ 0 }$ then A =

  1. $15^{ 0 }$

  2. $45^{ 0 }$

  3. $90^{ 0 }$

  4. $30^{ 0 }$


Correct Option: A

The value of $cos^2 10^o 15^o + cos^2 20^o +...... + cos^2 365^O$

  1. 34

  2. 36

  3. 35

  4. 37/2


Correct Option: A

$16 \cos^6 10^o - 24 \cos^4 10^o + 9 \cos^2 10^o$ is equal to

  1. $\dfrac{1}{4}$

  2. $\dfrac{3}{4}$

  3. $\dfrac{1}{2}$

  4. $1$


Correct Option: A

If $(1+\tan 1^{o})(1+\tan 2^{o})(1+\tan 3^{o})....(1+\tan 45^{o})=2^{n}$, then $n$ is equal to 

  1. $21$

  2. $24$

  3. $23$

  4. $22$


Correct Option: A

Values of : $sin{ 10 }^{ 0 }sin{ 50 }^{ 0 }sin{ 60 }^{ 0 }sin{ 70 }^{ 0 }$ is

  1. $\cfrac { 3 }{ 16 } $

  2. $\cfrac { 5 }{ 16 } $

  3. $\cfrac { \sqrt { 3 } }{ 16 } $

  4. $\cfrac { \sqrt { 5 } }{ 16 } $


Correct Option: C
Explanation:

As we know that

$\sin A\sin(60^{\circ}-A)\sin (60^{\circ}+A)=\dfrac{1}{4}\sin 3 A$
Put $A=10^{\circ}$
So $\sin 10^{\circ}\sin 50^{\circ}\sin 70^{\circ}=\dfrac{1}{4}\sin 30^{\circ}=\dfrac{1}{8}$
So $\sin 10^{\circ}\sin 60^{\circ}\sin 50^{\circ}\sin 70^{\circ}=\sin 60^{\circ}(\sin 10^{\circ}\sin 50^{\circ}\sin 70^{\circ})=\dfrac{\sqrt{3}}{2}\times \dfrac{1}{8}=\dfrac{\sqrt{3}}{16}$