Tag: trigonometry

Questions Related to trigonometry

If $\alpha$ is the angle of first quadrant such that $co\sec ^{ 4 }{ \alpha  }=17+\cot ^{ 4 }{ \alpha  } $, then what is the value of $\sin{\alpha}$?

  1. $\cfrac{1}{3}$

  2. $\cfrac{1}{4}$

  3. $\cfrac{1}{9}$

  4. $\cfrac{1}{16}$


Correct Option: A
Explanation:
$ cosec^{4}\alpha -cot^{4}\alpha = 17$

 (As $ cosec^{2}\alpha -cot^{2}\alpha=1) $

$ \Rightarrow (cosec^{2}\alpha -cot^{2}\alpha )(cosec^{2}\alpha +cot^{2}\alpha ) = 17 $ 

$ \Rightarrow cosec^{2}\alpha +cot^{2}\alpha = 17...(1) $

$ cosec^{2}\alpha -cot^{2}\alpha = 1...(2) $

then $ (1) + (2) \Rightarrow 2cosec^{2}\alpha = 18 $

$ \Rightarrow sin^{2}\alpha = \dfrac{1}{9}\Rightarrow \boxed{sin\,\alpha = \dfrac{1}{3}} $ $ \left ( \because \alpha \,in\,1st\,quadrant \right ) $ 

General solution of $\dfrac{1-{tan}^{2}x}{{sec}^{2}x}=\dfrac{1}{2}$ is

  1. $n\pi+\dfrac{\pi}{6},n\in Z$

  2. $n\pi-\dfrac{\pi}{6},n\in Z$

  3. $n\pi\pm\dfrac{\pi}{6},n\in Z$

  4. $2n\pi\pm\dfrac{\pi}{6},n\in Z$


Correct Option: C
Explanation:

Given $\dfrac{1-\tan^2 x}{\text{sec}^2 x}=\dfrac{1}{2}$


$\implies \dfrac{1-\tan^2 x}{1+\tan^2 x}=\dfrac{1}{2}$


$\implies 2-2\tan^2 x=1+\tan^2 x$

$\implies \tan^2 x=\dfrac{1}{3}=\tan^2 \dfrac{\pi}{6}$

$\implies x=n\pi\pm \dfrac{\pi}{6}$

The cosine of the obtuse angle formed by the medians from the vertices of the acute angles of an isosceles right angled triangle is

  1. $- 2 / 3$

  2. $- 4 / 5$

  3. $- 3 / 5$

  4. $- 3 / 4$


Correct Option: A

In an isosceles $\triangle ABC$, if the altitudes intersect on the inscribed circle then cosine of the vertical angle $'A'$ is :

  1. $\cfrac{1}{9}$

  2. $\cfrac{1}{3}$

  3. $\cfrac{2}{3}$

  4. None of these


Correct Option: A

If $3sin\alpha =5sin\beta ,\quad then\quad \frac { \tan { \frac { \alpha +\beta }{ 2 } } }{ \tan { \frac { \alpha -\beta }{ 2 } } } $ is equal to

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A
Explanation:

Given $3\sin \alpha=5\sin \beta\implies \dfrac{\sin \alpha}{\sin \beta}=\dfrac{5}{3}$


Applying componendo and dividendo rule


$\implies \dfrac{\sin \alpha+\sin \beta}{\sin \alpha-\sin \beta}=\dfrac{5+3}{5-2}$

$\implies \dfrac{2\sin \dfrac{\alpha+\beta}{2}\cos \dfrac{\alpha-\beta}{2}}{2\sin \dfrac{\alpha-\beta}{2}\cos \dfrac{\alpha+\beta}{2}}=\dfrac{8}{2}$

$\implies \dfrac{\tan \dfrac{\alpha+\beta}{2}}{\tan \dfrac{\alpha-\beta}{2}}=4$

If $y\tan (A+B+C)=x\tan (A+B-C)=\lambda$, then $\tan 2C=?$

  1. $\dfrac{\lambda(x+y)}{\lambda^2-xy}$

  2. $\dfrac{\lambda(x+y)}{\lambda^2+xy}$

  3. $\dfrac{\lambda(x-y)}{xy-\lambda^2}$

  4. $\dfrac{\lambda (x-y)}{xy+\lambda^2}$


Correct Option: B
Explanation:

Given $y\tan (A+B+C)=x\tan (A+B-C)=\lambda$

$\implies \tan (A+B+C)=\dfrac{\lambda}{y},\tan (A+B-C)=\dfrac{\lambda}{x}$

$\tan 2 C=\tan ((A+B+C)-(A+B-C))=\dfrac{\tan (A+B+C)-\tan (A+B-C)}{1+\tan (A+B+C)\tan (A+B-C)}$

                                                                                $=\dfrac{\frac{\lambda}{y}-\frac{\lambda}{x}}{1+\frac{\lambda^2}{x y}}$

                                                                                $=\dfrac{\lambda(x-y)}{x y+\lambda^2}$

If $4^{2\, sin^2x}.16^{tan^2x}.2^{4\, cos^2x} = 256 $ such that $0 < x < \dfrac{\pi}{2}$ then $x$ is equal to ___________.

  1. $\dfrac{\pi}{3}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{12}$

  4. $\dfrac{\pi}{24}$


Correct Option: B
Explanation:
${4}^{2{\sin}^{2}{x}}.{16}^{{\tan}^{2}{x}}.{2}^{4{\cos}^{2}{x}}=256$

$\Rightarrow\,{2}^{4{\sin}^{2}{x}}.{2}^{4{\tan}^{2}{x}}.{2}^{4{\cos}^{2}{x}}={2}^{8}$

$\Rightarrow\,{2}^{4{\sin}^{2}{x}+4{\tan}^{2}{x}+4{\cos}^{2}{x}}={2}^{8}$

$\Rightarrow\,4{\sin}^{2}{x}+4{\tan}^{2}{x}+4{\cos}^{2}{x}=8$

$\Rightarrow\,{\sin}^{2}{x}+{\tan}^{2}{x}+{\cos}^{2}{x}=2$

$\Rightarrow\,\left({\sin}^{2}{x}+{\cos}^{2}{x}\right)+{\tan}^{2}{x}=2$

$\Rightarrow\,1+{\tan}^{2}{x}=2$ since $\left({\sin}^{2}{x}+{\cos}^{2}{x}=1\right)$

$\Rightarrow\,{\sec}^{2}{x}=2$ since $1+{\tan}^{2}{x}={\sec}^{2}{x}$

$\Rightarrow\,{\cos}^{2}{x}=\dfrac{1}{2}$

$\Rightarrow\,\cos{x}=\pm\dfrac{1}{\sqrt{2}}$

$\Rightarrow\,\cos{x}=\dfrac{1}{\sqrt{2}}$ since $0<x<\dfrac{\pi}{2}$

$\Rightarrow\,x=\dfrac{\pi}{4}$

The value of ${ cosec }^{ 2 }{ 51 }^{ 0 }-{ cot }^{ 2 }{ 51 }^{ 0 }$ is 

  1. 1

  2. -1

  3. 0

  4. $\frac { 1 }{ 2 } $


Correct Option: A
Explanation:

We know,

$1 + \cot^2\theta = cosec^2 \theta$

$\therefore cosec^2\theta - \cot^2 \theta = 1$

Thus, $cosec^2  51^o - \cot^251^o = 1$

Hence, option a is correct.

Choose the correct option for the following statement.

The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.

  1. The given statement is true 

  2. The given statement is false

  3. Incomplete information

  4. None of the above.


Correct Option: A
Explanation:

By definition,

The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.
Therefore, the given statement is true.

$\sin { { 30 }^{ o }= } $

  1. $\dfrac {1}{2}$

  2. $-\dfrac {1}{2}$

  3. $\dfrac {\sqrt {3}}{2}$

  4. $-\dfrac {\sqrt {3}}{2}$


Correct Option: A
Explanation:

As we know that 

$\sin 30^{\circ}=\dfrac{1}{2}$