Tag: decimal expansions of real numbers

Questions Related to decimal expansions of real numbers

$0.\overline{585}$ is equal to

  1. $\displaystyle\frac{585}{99}$

  2. $\displaystyle\frac{585}{999}$

  3. $\displaystyle\frac{999}{585}$

  4. none of these


Correct Option: B
Explanation:

Given that, $0.\overline{585}$.

Let,

$ x=0.\overline{585} $

$ x=0.585585585........ $

 

Multiply by 1000 on both sides,

$ 1000x=1000\times 0.585585585........ $

$ =585.585585585.... $

$ =585+0.585585585........ $

$ 1000x=585+x $

$ 999x=585 $

$ x=\dfrac{585}{999} $

 

Hence, this is the answer.

A terminating decimal has a ............ number of terms after the decimal point.

  1. zero

  2. infinite

  3. finite

  4. none of the above


Correct Option: C
Explanation:

A terminating decimal is a decimal that ends. It's a decimal with a finite number of digits.
Therefore, $C$ is the correct answer.

As the decimal of $\dfrac {1}{3}$ repeats$,$ $\dfrac {1}{3}$ is a $.........$ decimal.

  1. exact

  2. negative

  3. terminating

  4. non-terminating


Correct Option: D
Explanation:

$\dfrac {1}{3} = 0.33333333333333333333333333....$ 

It is non-terminating recurring decimal.
Therefore, $D$ is the correct answer.

If the quotient is terminating decimal, the division is complete only when ...............

  1. we get the remainder $1$

  2. we get the remainder zero

  3. we get the remainder as the repeated numbers

  4. All of the above


Correct Option: B
Explanation:
Any division is complete only when we get the remainder zero.
Therefore, $B$ is the correct answer.

A ............. decimal representation can be repeating or non-repeating decimal

  1. real

  2. non-terminating

  3. terminating

  4. none of these


Correct Option: B
Explanation:

A non- terminating representation can be repeating $\dfrac{7}{22} = 0.31818181....$
or non-repeating decimal $\pi = 3.1415....$
Therefore, $B$ is the correct answer.

Which option will have a terminating decimal expansion?

  1. $\dfrac {77}{210}$

  2. $\dfrac {23}{30}$

  3. $\dfrac {125}{441}$

  4. $\dfrac {23}{8}$


Correct Option: D
Explanation:

The decimal expansion of a number may terminate in which case the number is called a regular number or finite decimal. In the given options:

a. $\dfrac{77}{210} = 0.366666666....... \; or  \; 0.3\bar6$

b. $\dfrac{23}{30} = 0.766666666....... \; or  \; 0.7\bar6$

c. $\dfrac{125}{441} = 0.283446712......$ i.e. it goes on infintely

d. $\dfrac{23}{8} = 2.875$

A number having non-terminating and recurring decimal expansion is.

  1. An integer

  2. A rational number

  3. An irrational number

  4. A whole number


Correct Option: B
Explanation:

A number having non-terminating and recurring decimal expansion is  a Rational Number


for example 

$\dfrac{2}{7}$  is a rational number 

$\dfrac{2}{7} =0.285714285714285714.......... $

or   $\dfrac{2}{7} =\overline{0.285714}.......... $

the number has non-terminating decimal expansion but recurring after every 6 digits after decimal

So option $B $ is correct

$1.23 \bar{48}$ is:

  1. An integer

  2. A rational number

  3. An irrational number

  4. A natural number


Correct Option: B
Explanation:

$1.23\bar{48}$ can be written as $1.23484848484848....$ and so on 

Hence this is a recurring decimal as decimal part is repeating after one-thousand's place.
Thus, it is a rational number.

Which of the following numbers has the terminating decimal representation?

  1. $\displaystyle \frac{1}{7}$

  2. $\displaystyle \frac{1}{3}$

  3. $\displaystyle \frac{3}{5}$

  4. $\displaystyle \frac{17}{3}$


Correct Option: C
Explanation:

$\dfrac{3}{5} = 0.6$ which is terminating decimal. 


$\dfrac{1}{7} = 0.142857.....$

$\dfrac{1}{3} = 0.333......$

$\dfrac{17}{3} = 5.6666......$

Show the correct sequence of the given four option in ascending order
(1) Prime minister  (2) Chief Minister  (3) Mayor  (4) President  (5) Sarpanch

  1. $5,3,2,4,1$

  2. $5,2,3,4,1$

  3. $5,3,2,1,4$

  4. $5,4,2,1,3$


Correct Option: C
Explanation:
In ascending order 
Sarpanch < Mayore < Chief Minister < Prime minister < President.
$\therefore$ Option $ C$  is the correct answer.