Tag: rational and irrational numbers

Questions Related to rational and irrational numbers

Which of the following rational number represents a terminating decimal expansion?

  1. $

    \dfrac { 77 } { 210 }

    $

  2. $

    \dfrac { 13 } { 125 }

    $

  3. $

    \dfrac { 2 } { 15 }

    $

  4. $

    \dfrac { 17 } { 18 }

    $


Correct Option: B
Explanation:
Any rational number its denominator is in the form of $2^m\times 5^n$, where $m,n$ are positive integer s are terminating decimals.

Solution is $B$ as $A$ is non terminating decimals.
$A =\dfrac{77}{210}= 0.366......$

$B =\dfrac{13}{125}= 0.104$

$C =\dfrac{2}{15}= 0.133.....$

$D =\dfrac{17}{18}=  0. 9444....$

Say true or false:

$87, 54, 0, -13, \sqrt{16}$ are integers 

  1. True

  2. False


Correct Option: A
Explanation:

The real value of $\sqrt { 16 } =4$

All other numbers are integers.
So, the given statement is true.

Read out each of the following numbers carefully and specify the natural numbers in it.
$87, 54, 0, -13, -4.7, \sqrt{7}, 2{1}{7}, \sqrt{15}, -{8}{7}, 3\sqrt{7}, 4.807, 0.002, \sqrt{16}$ and $2+\sqrt{3}.$

  1. $0,87,54,\sqrt{16}$

  2. $87, 54,$  $\sqrt{16}$, $217$

  3. $0, -13, -4,7, 217, 54, 87$

  4. $\sqrt{7}$, $\sqrt{15}$, $3 \sqrt{7}$, $\sqrt{16}$, $2 + \sqrt{3}$,


Correct Option: B
Explanation:

Natural numbers from the given list are 87, 54,  $\sqrt { 16 } =4$ and 217

There can be a pair of irrational numbers whose sum is irrational 

Such as: $\displaystyle \sqrt{3}+2$ and $\displaystyle 5+\sqrt{2}$

  1. True

  2. False


Correct Option: A
Explanation:

To get the sum as irrational, the numbers need to have an irrational part as well which are different from each other.

Example, the pair of numbers $ \sqrt{3} + 2 $ and $ 5 + \sqrt {2} $ have the sum $ \sqrt{3} + 2 + 5 + \sqrt {2} = 7 + \sqrt {2} + \sqrt {3} $ which is an irrational number too.

State true or false:

$\sqrt3$ is an irrational number

  1. True

  2. False


Correct Option: A
Explanation:

Decimal form of $\sqrt { 3 } $ is non terminating and non repeating, So, it is irrational number.

Simplify : 

$\displaystyle \sqrt{2}\times \sqrt[3]{3} \times \sqrt[4]{4}$.

  1. $\sqrt[3]{12}$

  2. $\sqrt[3]{24}$

  3. $\sqrt[3]{20}$

  4. $\sqrt[3]{25}$


Correct Option: B
Explanation:

$ \sqrt{2} \times \sqrt[3] {3} \times \sqrt[4]{4}$
$=2^{ \frac { 1 }{ 2 }  } \times 3^{ \frac { 1 }{ 3 }  }\times 2^{ \frac { 2 }{ 4 }  }$
$=2^{ \frac { 1 }{ 2 }  } \times 2^{ \frac { 1 }{ 2 }  }\times 3^{ \frac { 1 }{ 3 }  }$
$=2  \times3^{ \frac { 1 }{ 3 }  }$
$=2^{ \frac { 3 }{ 3 }  }\times3^{ \frac { 1 }{ 3 }  }  $
$=\sqrt [ 3 ]{ 2^{ 3 } }\times\sqrt[3]{3}$
$=\sqrt[3]{8\times3}$
$=\sqrt[3]{24}$

Which of the following is irrational?

  1. $\dfrac {22}{7}$

  2. $3.141592$

  3. $2.78181818$

  4. $0.123223222322223.......$


Correct Option: D
Explanation:

An irrational number is any real number that cannot be expressed as a ratio of integers. Irrational numbers are those real numbers that cannot be represented as terminating or repeating decimals.
Among all the options only $(D)$ $0.123223222322223$...... is non terminating and non repeating decimal.Therefore, it is a irrational number.

$\sqrt 7$ is

  1. A rational number

  2. An irrational number

  3. Not a real number

  4. Terminating decimal


Correct Option: B
Explanation:

Rational numbers are those numbers which can be expressed in the form $ \dfrac {p}{q} $, where p and q are integers and $ q \neq 0 $
Numbers which are not rational numbers are called irrational numbers.
Since, $ \sqrt {7} $ cannot be written in
$ \dfrac {p}{q} $, where $p$ and $q$ are integers and $ q \neq 0 $; it is an irrational number.

State whether the following statement are true or false? Justify your answers.

Every irrational number is a real number.

  1. True

  2. False


Correct Option: A
Explanation:

Real number consists of collection of rationals and irrationals.

Hence, every irrational number is also a real number.

Example-2 is also real.

State whether the following statement are true or false? Justify your answers.

Every real number is an irrational number.

  1. True

  2. False


Correct Option: B
Explanation:

The statement is false since real numbers consists of both rational and irrational numbers. $5,65,8/9...$ are all real numbers which are rational.