Tag: rational and irrational numbers

Questions Related to rational and irrational numbers

If $A=\sqrt{7}-\sqrt{6}$ and $B=\sqrt{6}-\sqrt{5}$, then identify the true statement.

  1. $A> B$

  2. $A=B$

  3. $A< B$

  4. $A\ge B$


Correct Option: C
Explanation:
$A=\sqrt{7}-\sqrt{6}\Rightarrow \dfrac{1}{A}=\dfrac{\sqrt{7}+\sqrt{6}}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}$
$\Rightarrow \boxed{\dfrac{1}{A}=\sqrt{7}+\sqrt{6}}$
$\boxed{\dfrac{1}{B}=\sqrt{6}+\sqrt{5}}$
As $\sqrt{7} > \sqrt{5}\Rightarrow \dfrac{1}{A} > \dfrac{1}{B}$
$\Rightarrow \boxed{B > A}$

The smallest between $\sqrt{17} - \sqrt{12}$ and $\sqrt{11} - \sqrt{6}$ is _________.

  1. $\sqrt{17} - \sqrt{12}$

  2. $\sqrt{11} - \sqrt{6}$

  3. Both are equal

  4. Can't be determined


Correct Option: A
Explanation:

$\sqrt{17} \approx 4.123$

$\sqrt{12} \approx 3.464$
$\sqrt{11} \approx 3.316$
$\sqrt{6} \approx 2.449$

$\Rightarrow \sqrt{17} - \sqrt{12} = 0.659$
$\Rightarrow \sqrt{11} - \sqrt{6} = 0.867$

Hence, $\sqrt{17}-\sqrt{12}$ is smaller.

The smallest of $\sqrt [ 3 ]{ 4 } , \sqrt [ 4 ]{ 5 } , \sqrt [ 4 ]{ 6 } , \sqrt [ 3 ]{ 8 } $ is:

  1. $\sqrt [ 3 ]{ 8 } $

  2. $\sqrt [ 4 ]{ 5 } $

  3. $\sqrt [ 3 ]{ 4 } $

  4. $\sqrt [ 4 ]{ 6 } $


Correct Option: B
Explanation:
$\sqrt[3]{4}=\sqrt[12]{44}=\sqrt[12]{256}$
$\sqrt[4]{6}=\sqrt[12]{5^3}=\sqrt[12]{125}$
$\sqrt[4]{6}=\sqrt[12]{6^{3}}=\sqrt[12]{216}$
$\sqrt[3]{8}=\sqrt[12]{8^{4}}=\sqrt[12]{64^{2}}$
As $'125'$ is smallest
$\therefore \boxed{4\sqrt{5}}$ is smallest

Let x and y be rational and irrational numbers, respectively, then x + y necessarily an irrational number.


State True or False.

  1. True

  2. False


Correct Option: A
Explanation:

Yes.

Let x $= 21, y =\sqrt{2}$ be a rational number
Now $x+y=21 +\sqrt{2}=21+1.4142....=22.4142....$ , which is non-terminating and non-recurring. Hence x+y is irrational.

If $A=\sqrt [ 3 ]{ 3 } , B=\sqrt [ 4 ]{ 5 } $, then which of the following is true?

  1. $A=\cfrac{3}{5}B$

  2. $A< B$

  3. $A> B$

  4. $A={B}^{4/5}$


Correct Option: B
Explanation:
$A=3^{\dfrac{1}{3}}=\sqrt[12]{34}=\sqrt[12]{81}$
$B=5^{\dfrac{1}{4}}=\sqrt[12]{5^{3}}=\sqrt[12]{125}$
As $125 > 81$
$\Rightarrow \boxed{B > A}$

The descending order of the surds $\sqrt[3]{2} , \sqrt[6]{3} , \sqrt[9]{4}$ is _________.

  1. $\sqrt[9]{4} , \sqrt[6]{3} , \sqrt[3]{2}$

  2. $\sqrt[9]{4} , \sqrt[3]{2} , \sqrt[6]{3}$

  3. $\sqrt[3]{2} , \sqrt[6]{3} , \sqrt[9]{4}$

  4. $\sqrt[6]{3} , \sqrt[9]{4} , \sqrt[3]{2}$


Correct Option: C
Explanation:

$\sqrt[3]{2} \approx 1.26$

$\sqrt[6]{3} \approx 1.201$
$\sqrt[9]{4} \approx 1.166$

$\therefore$ Ascending order is $\sqrt[9]{4} < \sqrt[6]{3} < \sqrt[3]{2}$

Which of the following is smallest ?

  1. $\sqrt[4]{5}$

  2. $\sqrt[5]{4}$

  3. $\sqrt{4}$

  4. $\sqrt{3}$


Correct Option: B
Explanation:

Clearly, one of $4^{\frac{1}{5}}$ and $5^{\frac{1}{4}}$ must be the smallest.
$\frac{1}{5}$<$\frac{1}{4}$.
So, $\displaystyle 4^{\frac{4}{20}}$ < $5^{\frac{5}{20}}$

Which of the following is the greatest?
$\sqrt{12}$, $\sqrt{13}$,$\sqrt{15}$,$\sqrt{17}$.

  1. $\sqrt{12}$

  2. $\sqrt{13}$

  3. $\sqrt{15}$

  4. $\sqrt{17}$


Correct Option: D
Explanation:

$12<13<15<17\ \Rightarrow \sqrt{12}<\sqrt{13}<\sqrt{15}<\sqrt{17}$

Therefore, $ \sqrt{17}$ is greatest.

Identify the irrational number(s) between $2\sqrt{3}$ and $3\sqrt{3}$

  1. $\sqrt{19}$

  2. $\sqrt{29}$

  3. $\cfrac { 4\sqrt { 3 } }{ \sqrt { 3 } } $

  4. $\sqrt{17}$


Correct Option: A,D
Explanation:
$2\sqrt{3}=\sqrt{12}$
$3\sqrt{3}=\sqrt{27}$
$\therefore \sqrt{176}\sqrt{19}$ are irrational no between them $\sqrt{29}$ lie out of it.
As $\dfrac{4\sqrt{3}}{\sqrt{3}}=4$ (Rational)

Compare the following pairs of surds. $\sqrt[4]{64}, \sqrt[6]{128}$    

  1. $\sqrt[4]{64} > \sqrt[6]{128}$

  2. $\sqrt[4]{64} < \sqrt[6]{128}$

  3. $\sqrt[4]{64} \neq \sqrt[6]{128}$

  4. $\sqrt[4]{64} = \sqrt[6]{128}$


Correct Option: A
Explanation:

$\sqrt[4]{64}=\sqrt[4]{2^6}=2\sqrt[4]{2^2}=2\sqrt{2}=2\sqrt[6]{2^3}=2\sqrt[6]{8}$
$\sqrt[6]{128}=\sqrt[6]{2^7}=2\sqrt[6]{2}$
$\sqrt[4]{64}>\sqrt[6]{128}$