Tag: surface area and volume of cube and cuboid

Questions Related to surface area and volume of cube and cuboid

Given that in a right angled triangle the length of two sides are 11 and 60. Find the perimeter of the triangle.

  1. $132$

  2. $145$

  3. $89$

  4. $200$


Correct Option: A
Explanation:
$\begin{array}{l} { 11^{ 2 } }+{ 60^{ 2 } }={ 61^{ 2 } } \\ \Rightarrow Perimeter\, \, of\, \, \Delta =132\, \, cm \\ \left\{ { \because sides\, \, 11,60\, \, \& \, \, 61 } \right\}  \end{array}$

In a right angled triangle the hypotenuse is  $2\sqrt{2}$ times the length of the perpendicular drawn from the opposite vertex on the hypotenuse. The the other two angles are

  1. $\left( \dfrac { \pi }{ 3 } ,\dfrac { \pi }{ 6 } \right)$

  2. $\left( \dfrac { \pi }{ 4 } ,\dfrac { \pi }{ 4 } \right)$

  3. $\left( \dfrac { \pi }{ 8} ,\dfrac { 3\pi }{ 8 } \right)$

  4. $\left( \dfrac { \pi }{ 12 } ,\dfrac { 5\pi }{ 12 } \right)$


Correct Option: C

In a right angled triangle, the square of the hypotenuse is equal to twice the product of the other two sides. One of the acute angles of the triangle is:

  1. $40^0$

  2. $42^0$

  3. $44^0$

  4. $45^0$


Correct Option: D
Explanation:

Let $\triangle ABC$ be right angled at B.

Then, by Pythagoras theorem,

$AC^2 = AB^2+BC^2$

But $AC^2 = 2 \times AB . BC$     .....Given

Hence, $AB^2 + BC^2 = 2 \times AB. BC$

$AB^2 + BC^2 - 2 \times AB. BC = 0$

$(AB - BC)^2 = 0$

So, $AB = BC$

Therefore, $\triangle ABC$ is right isosceles triangle.

So, $\angle A = \angle C = 45^o$.

Evaluate cos$\begin{pmatrix}2csc^{-1}(\dfrac{x+4}{5})\end{pmatrix} = $

  1. $\dfrac{x^2+8x-16}{x+4}$

  2. $\dfrac{x^2+8x-16}{(x+4)^2}$

  3. $\dfrac{x^2+8x-34}{x+4}$

  4. $\dfrac{x^2+8x-34}{(x+4)^2}$

  5. $\dfrac{-16-8x-x^2}{(x+4)^2}$


Correct Option: D
Explanation:

Let $\theta =\csc ^{ -1 }{ \left( \dfrac { x+4 }{ 5 }  \right)  }$ implies that $\csc { (\theta )=\dfrac { x+4 }{ 5 }  }$ and therefore, $\sin { (\theta ) } =\dfrac { 5 }{ x+4 }$.


Use the pythagorean theorem to determine that the remaining leg of the right triangle has length:

$\sqrt { (x+4)^{ 2 }-5^{ 2 } } =\sqrt { x^{ 2 }+16+8x-25 } =\sqrt { x^{ 2 }+8x-9 }$

Therefore, $\cos { (\theta ) } =\dfrac { \sqrt { x^{ 2 }+8x-9 }  }{ x+4 }$  

Hence, $\cos { (2\theta ) } =\cos ^{ 2 }{ (\theta ) } -\sin ^{ 2 }{ (\theta ) } $
$=\left( \dfrac { \sqrt { x^{ 2 }+8x-9 }  }{ x+4 }  \right) ^{ 2 }-\left( \dfrac { 5 }{ x+4 }  \right) ^{ 2 }$
$=\dfrac { x^{ 2 }+8x-9 }{ \left( x+4 \right) ^{ 2 } } -\dfrac { 25 }{ \left( x+4 \right) ^{ 2 } } $
$=\dfrac { x^{ 2 }+8x-34 }{ \left( x+4 \right) ^{ 2 } }$ 

Diagonals $\overline{AC}$ and $\overline{BD}$ of quadrilateral $ABCD$ are perpendicular. $AD=DC=8, AC=BC=6, m\angle ADC = 60^o$. The area of $ABCD$ is

  1. $4\sqrt{5}+8\sqrt{3}$

  2. $16\sqrt{3}$

  3. $32\sqrt{3}$

  4. $8\sqrt{5}+16\sqrt{3}$

  5. $48$


Correct Option: D
Explanation:

The altitude to the base of an isosceles triangle also bisects the vertex angle, so $m\angle ADE=30$.

With the hypotenuse of the triangle having a length of $8$, $AE=4$ and $DE=4\sqrt { 3 }$.
$\triangle AEC$ is a right angle with leg $4$ and hypotenuse $6$.
Use the pythagorean theorem to determine that 
$BE=\sqrt { 6^{ 2 }-4^{ 2 } } =\sqrt { 36-16 } =\sqrt { 20 } =2\sqrt { 5 }$
The area of the quadrilateral with perpendicular diagonals is equal to half the product of the diagonals, so the area of $ABCD$ is:
$A=\dfrac { 1 }{ 2 } \times 8\times (2\sqrt { 5 } +4\sqrt { 3 } )=4(2\sqrt { 5 } +4\sqrt { 3 } )=8\sqrt { 5 } +16\sqrt { 3 }$