Tag: decimal fractions

Questions Related to decimal fractions

Write the number of significant digits in $23.4$

  1. $2$

  2. $23.4$

  3. $3$

  4. $1$


Correct Option: C
Explanation:

Non-zero digits are always significant.

$\therefore  23.4$ has $3$
significant digits.

Divide $7$  by $11$ and express the result in two significant digits.

  1. $0.64$

  2. $0.583$

  3. $0.54$

  4. $0.67$


Correct Option: A
Explanation:

On dividing 7 by 11, we get 0.6363636363.... .

If we have to express this in two significant digits, then it would be 0.64 as 6 is > 5  and 1 would get added to 3.

Write the number of significant digits in:

$0.07$.

  1. $7$

  2. $1$

  3. $3$

  4. $2$


Correct Option: B
Explanation:

Zeroes placed before other digits are not significant.
$\therefore  0.07$
has $1$ significant digit.

Write the number of significant digits in:

$0.0016$.

  1. $2$

  2. $5$

  3. $1$

  4. $4$


Correct Option: A
Explanation:

Zeroes placed before other digits are not significant.
$\therefore  0.0016$  has $2$ significant digits.

Write the number of significant digits in:

$805.060$.

  1. $3$

  2. $2$

  3. $5$

  4. $6$


Correct Option: D
Explanation:

All zeroes which  are both to the right of the decimal point and to the right of all non-zero significant digits  are themselves significant.
$\therefore  805.060$ has $6$
significant digits

For rational numbers, $x$ and $y,$ if $x > y,$ then which of the following is always a positive rational number?

  1. $ y - xy$

  2. $ xy-x$

  3. $ y-x$

  4. $ x- y $


Correct Option: D
Explanation:
If $x>y$

$y-xy\rightarrow $ can be both positive and negative.

Example coside $x>1$ & $y>0$

$\left(y-xy\right)<0$

$xy-x\rightarrow $ can be both positive and negative 

$y-x\rightarrow $ always negative

$\boxed {x-y\rightarrow always\ positive\ since\ x>y}$

$0.\overline{5}$ in the form of $\frac{p}{q}$ is :

  1. $\dfrac{9}{5}$

  2. $\dfrac{5}{10}$

  3. $\dfrac{5}{9}$

  4. $\dfrac{10}{5}$


Correct Option: C
Explanation:

$Let\quad x=.555....\ On\quad multiplying\quad by\quad 10\quad on\quad both\quad sides\quad \ 10x=5.555....\ On\quad subtracting\quad both\quad equations\quad \ 9x=5\ x=\dfrac { 5 }{ 9 } \ $

Hence, correct answer is option C.

If $x$ and $y$ are positive real number, then which of the following is correct?

  1. $x > y \Rightarrow -x > -y $

  2. $x > y \Rightarrow -x < -y $

  3. $x > y \Rightarrow \dfrac{1}{x} > \dfrac{1}{y} $

  4. $x > y \Rightarrow \dfrac{1}{x} < \dfrac{-1}{y} $


Correct Option: B
Explanation:

If $x$ and $y$ are positive number and $x>y$, then 

$\Rightarrow -x<-y$ 
Also, $x>y$ $\Rightarrow \dfrac{1}{x}<\dfrac{1}{y}$
Hence, B is correct option.

Express $\displaystyle 9\frac{7}{20}$ as a decimal.

  1. $9.05$

  2. $9.53$

  3. $9.26$

  4. $9.35$


Correct Option: D
Explanation:

$9\dfrac{7}{20}= \dfrac{187}{20}=9.35$

Hence the correct answer is option D.

In expressing a length $81.472 \ km$ as nearly as possible with three significant digits, the percent error is

  1. $0.34\%$

  2. $0.034\%$

  3. $0.0034\%$

  4. $0.0038\%$


Correct Option: B
Explanation:

$81.472 km = 81472$ meters $= 81500$ meters with three significant digits.
$\displaystyle \therefore Error\%=\frac{81500-81472}{81472}\times 100=0.034\%$