Tag: inverse of a matrix and linear equations

Questions Related to inverse of a matrix and linear equations

The matrix $\left[ \begin{matrix} \lambda  & 7 & -2 \ 4 & 1 & 3 \ 2 & -1 & 2 \end{matrix} \right]$ is a singular matrix if $\lambda$ is

  1. $\dfrac{2}{5}$

  2. $\dfrac{5}{2}$

  3. $-5$

  4. $none\ of\ these$


Correct Option: A

If 3, -2 are the Exigent values of non-singular matrix A and |A|=4. Then Exigent values of Adj(A) are

  1. 3/4, -1/2

  2. 4/3, -2

  3. 12, -8

  4. -12, 8


Correct Option: B
Explanation:

$\begin{array}{l} { \lambda _{ 1 } }=3,\, \, { \lambda _{ 2 } }=-2 \ \left| A \right| =4 \ adj\left( A \right) =\left( A \right) \cdot { A^{ -1 } } \ Ax=\lambda x \ \frac { 1 }{ \lambda  } x={ A^{ -1 } }x \ \left( { \lambda I\cdot { A^{ -1 } } } \right) =\frac { { \left( A \right) \cdot \left( { \lambda I-{ A^{ -1 } } } \right)  } }{ { \left( A \right)  } }  \ exigent\, value\, of\, adj\left( A \right) \, is\, \frac { { \left( A \right)  } }{ { exigent\, value\, of\, A } }  \ =\frac { 4 }{ 3 } ,\frac { 4 }{ { -8 } }  \ =\left( { \frac { 4 }{ 3 } ,-2 } \right)  \ Hence,\, option\, B\, is\, correct\, answer. \end{array}$

The values of K for which matrix $A = \begin{bmatrix} 1& 0 & - K\ 2 & 1 & 3\ K & 0 & 1\end{bmatrix}$ is invertible are

  1. $\displaystyle {-1,1 }$

  2. $\displaystyle R$

  3. $\displaystyle R\backslash {-1,1}$

  4. $\displaystyle no\space real\space values$


Correct Option: B
Explanation:

Matrix A is invertible if $|A| \neq 0$, i.e.,
$\begin{bmatrix}1 & 0 & -K\ 2 & 1 & 3\ K & 0 & 1\end{bmatrix} \neq 0$
or $1(1) - K (-K) \neq 0$
Expanding along second column
$|A| =-0+1(1-(-K)(K))=1+K^2 \neq 0$ which is true for all real K.
Hence, A is invertible for all real values of K.

With $1,\omega, \omega^2$ as cube roots of unity, inverse of which of the following matrices exists

  1. $\begin{bmatrix}1 & \omega \ \omega & \omega^2\end{bmatrix}$

  2. $\begin{bmatrix}\omega^2 & 1 \ 1 & \omega\end{bmatrix}$

  3. $\begin{bmatrix} \omega & \omega^2 \ \omega^2 & 1\end{bmatrix}$

  4. None of these


Correct Option: D
Explanation:

The inverse of a matrix exists if its determinant is not equal $0$.
For option A, 
Let $A=\begin{bmatrix}1 & {\omega} \ {\omega} & {\omega}^2\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

For option B, 
Let $A=\begin{bmatrix}{\omega}^{2} & 1 \ 1 & {\omega}\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

For option C, 
Let $A=\begin{bmatrix}{\omega} & {\omega}^{2} \ {\omega}^{2} & 1\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

Hence, the inverse does not exist for any of the given matrices

$\displaystyle \begin{bmatrix} 1 & -2 & 3 \ 2 & -1 & 4 \ 3 & 4 & 1 \end{bmatrix}$ is a

  1. rectangular matrix

  2. singular matrix

  3. square matrix

  4. nonsingular matrix


Correct Option: C,D
Explanation:

It is a $3 \times 3$ so it is a square matrix,


$\displaystyle \begin{bmatrix} 1 & -2 & 3 \ 2 & -1 & 4 \ 3 & 4 & 1 \end{bmatrix}$


$=1(-17)+2(-10)+3(11)$

$=-17-20+33$

$=33-37=-4$

so, it is not singular

The number of $3\times 3$ non-singular matrices with four entries as $1$ and all other entries as $0$ is

  1. $Less\ than\ 4$

  2. $5$

  3. $6$

  4. $At\ least\ 7$


Correct Option: A

If the matrix $A = \begin{bmatrix}8 & -6 & 2 \ -6 & 7 & -4 \ 2 & -4 & \lambda\end{bmatrix}$ is singular, then $\lambda = $

  1. $3$

  2. $4$

  3. $2$

  4. $5$


Correct Option: A
Explanation:

Given, the matrix $A$ is singular.

$\Rightarrow |A|=0$

$\begin{vmatrix} 8 & -6 & 2 \ -6 & 7 & -4 \ 2 & -4 & \lambda  \end{vmatrix}=0$

$8(7\lambda -16)+6(-6\lambda +8)+2(10)=0$

$\Rightarrow 20\lambda -60=0$

$\Rightarrow \lambda=3$

The inverse of a skew-symmetric matrix of odd order is

  1. a symmetric matrix

  2. a skew-symmetric matrix

  3. diagoinal matrix

  4. does not exists


Correct Option: D
Explanation:

Let A be a skew-symmetric matrix of order n.

By definition ${ A }^{ ' }=-A$
$\Rightarrow \left| { A }^{ ' } \right| =\left| -A \right| \Rightarrow \left| A \right| ={ \left( -1 \right)  }^{ n }\left| A \right| $
$\Rightarrow \left| { A } \right| =\left| -A \right| $ as n is odd
$\Rightarrow 2\left| { A } \right| =0\Rightarrow \left| { A } \right| =0$
Thus ${ A }^{ -1 }$ does not exist

State whether the following statement is true or false.

The matrix $\begin{bmatrix}1&3&0\ 4&0&-2\ 2&6&0\end{bmatrix}$ is singular matrix.

  1. True

  2. False


Correct Option: A
Explanation:

Let $A=$ $\begin{bmatrix}1&3&0\ 4&0&-2\ 2&6&0\end{bmatrix}$


Now, 

$|A|$$=\begin{vmatrix}1&3&0\ 4&0&-2\ 2&6&0\end{vmatrix}$

$=-2(1\times6-2\times3)$      [ Expanding about the second row]

$=0$.

So the given matrix $A$ is singular.

Suppose $  A  $ is any $  3 \times 3  $ non-singular matrix and $  (A-3 I)(A-5 I)=0,  $ where $  {I}={I} _{3}  $ and $  {O}={O} _{3} .  $ If $  \alpha {A}+\beta {A}^{-1}=4 {I},  $ then $  \alpha+\beta  $ is equal to :

  1. 8

  2. 7

  3. 13

  4. 12


Correct Option: D