Tag: vectors and transformations

Questions Related to vectors and transformations

$[ a \times b \times c ] =  2[ a b c ] ^ { 2 }$

  1. True

  2. False


Correct Option: B

If the position vectors of the vertices of atriangle are $2 \overline { i } - \overline { j } + \overline { k } , \overline { i } - 3 \vec { j } - 5 \overline { k }$ and $3 \vec { i } - 4 \overline { j } - 4 \overline { k }$ then the triangle is

  1. Equilateral triangle

  2. Isosceles triangle

  3. Right angled isosceles triangle

  4. Right angled triangle


Correct Option: D
Explanation:

$\\Let\>A\>(2\hat{i}-\hat{j}+\hat{k}),\>B(\hat{i}-3\hat{j}-5\hat{k})\>and\\C(3\hat{i}-4\hat{j}-4\hat{k})\\then\\\overrightarrow{AB}=-\hat{i}-2\hat{j}-6\hat{k}\\\therefore\>|\overrightarrow{AB}|=\sqrt{1+4+36}=\sqrt{41}\\\overrightarrow{BC}=2\hat{i}-\hat{j}+\hat{k}\\\therefore\>|\overrightarrow{BC}|=\sqrt{4+1+1}=\sqrt{6}\\\overrightarrow{CA}=-\hat{i}+3\hat{j}+5\hat{k}\\\therefore\>|\overrightarrow{CA}|=\sqrt{1+9+25}=\sqrt{35}\\clearly\>\>\>|\overrightarrow{BC}|^2+|\overrightarrow{CA}|^2=|\overrightarrow{AB}|^2\\\therefore\>Triangle\>is\>a\>right\>angled\>triangle$

If $\displaystyle {\sec}^{2}A\hat{i}+\hat{j}+\hat{k}$, $\displaystyle \hat{i}+{\sec}^{2}B\hat{j}+\hat{k}$,and $\displaystyle \hat{i}+\hat{j}+{\sec}^{2}C\hat{k}$, are coplanar then $\displaystyle {\cot}^{2}A+{\cot}^{2}B+{\cot}^{2}{C}$ is    

  1. $1$

  2. $2$

  3. $0$

  4. $-1$


Correct Option: D
Explanation:

$\begin{array}{l} \left| { \begin{array} { *{ 20 }{ c } }{ { { \sec   }^{ 2 } }A } & 1 & 1 \ 1 & { { { \sec   }^{ 2 } }B } & 1 \ 1 & 1 & { { { \sec   }^{ 2 } }C } \end{array} } \right| =0 \\ { C _{ 1 } }\to { C _{ 1 } }-{ C _{ 2 } }\, \, \, \, \, \, \, \, \, { C _{ 2 } }\to { C _{ 2 } }-{ C _{ 3 } } \\ \left| { \begin{array} { *{ 20 }{ c } }{ { { \tan   }^{ 2 } }A } & 0 & 1 \ { -{ { \tan   }^{ 2 } }B } & { { { \tan   }^{ 2 } }B } & 1 \ 0 & { -{ { \tan   }^{ 2 } }C } & { { { \sec   }^{ 2 } }C } \end{array} } \right| =0 \\ { \tan ^{ 2 }  }A\left[ { { { \tan   }^{ 2 } }B{ { \sec   }^{ 2 } }C+{ { \tan   }^{ 2 } }C } \right] +{ \tan ^{ 2 }  }B{ \tan ^{ 2 }  }C=0 \ \\dfrac { { { { \sec   }^{ 2 } }C } }{ { { { \tan   }^{ 2 } }C } } +{ \cot ^{ 2 }  }B+{ \cot ^{ 2 }  }A=0 \ \\cos  e{ c^{ 2 } }C+{ \cot ^{ 2 }  }B+{ \cot ^{ 2 }  }A=0 \\ { \cot ^{ 2 }  }A+{ \cot ^{ 2 }  }B+{ \cot ^{ 2 }  }C=-1 \\ Hence,\, the\, option\, D\, is\, \, the\, correct\, answer. \end{array}$

Let        $\dot{a}$ = $\hat{i}$ + $\hat{j}$ + $\sqrt{2}\hat{k}$
              $\dot{b}$ = $b _1\hat{i}$ + $b _2\hat{j}$ + $\sqrt{2}\hat{k}$
              $\dot{c}$ = $5\hat{i}$ + $\hat{j}$ + $\sqrt{2}\hat{k}$
& ($\dot{a}$ + $\dot{b}$) is perpendicular to \overrightarrow{c} and projection vector of $\dot{b}$ on $\overrightarrow{a}$ is $\overrightarrow{a}$ then find $\left | \overrightarrow{b} \right |$

  1. 6

  2. $\sqrt{22}$

  3. $\sqrt{32}$

  4. 11


Correct Option: B
Let a=i+j+k and c=j-k . If b is a vector satisfying a×b=c and a.b=3, then find b.
  1. $\dfrac{1}{3}(5\hat{i}+2\hat{j}+2\hat{k})$

  2. $\dfrac{1}{3}(2\hat{i}+3\hat{j}+\hat{k}$

  3. $\displaystyle 2\overrightarrow{a}$

  4. $\displaystyle -2\overrightarrow{a}$


Correct Option: A
Explanation:

Let$b=xi+yj+zk$

Now 
$a.b=x+y+z=3$
Now $a\times b=(i+j+k)(xi+yj+zk)\ \quad=(z-y)i+(x-z)j+(y-x)k=j-k$
Now $z.y=0$ hence $k=y$
Now  $x-z=1$ and $y-x=-1$
Now
$x+y+z=3\1+z+z+z=3\z=\cfrac{2}{3}$
Hence $y=\cfrac{2}{3}\x=\cfrac{5}{3}$
Now $\overrightarrow{b}=\cfrac{(5i+2j+2k)}{3}$

$A$ vector $\vec V$ is inclined at equal angles to axes $OX,OY$ and $OZ$. If $\vec V$ is $6units$, then $\vec V$ is

  1. $2\sqrt 3\left( \hat i+\hat j+\hat k right )$

  2. $2\sqrt 3\left( \hat i-\hat j+\hat k right )$

  3. $\sqrt 2\left( \hat i+\hat j+\hat k right )$

  4. $2\sqrt 3\left( \hat i+\hat j-\hat k right )$


Correct Option: A

$\sum _{ i=1 }^{ n }{ \vec { ai }  } =\vec { 0 } \quad where\quad |\vec { a\quad i\quad | } =1\forall i$ then the value of $\sum _{ 1\le i }^{  }{ \sum _{ <j\le n }^{  }{ \vec { { a } _{ i } }  }  } .\vec { { a } _{ j } } $ is 

  1. -n/2

  2. -n

  3. n/2

  4. n


Correct Option: A

If $ \vec{a} $ and $ \vec{b} $ are two non-collinear unit vectors such that $ |\vec{a}+\vec{b}| = \sqrt{3}, $ find $(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) $ 

  1. $ +\dfrac{11}{2} $

  2. $ -\dfrac{13}{2} $

  3. $ -\dfrac{11}{2} $

  4. $ +\dfrac{13}{2} $


Correct Option: C
Explanation:

Given $ |\vec{a}+\vec{b}| = \sqrt{3}, $

Now squaring both sides we get,

$(\vec{a}+\vec{b}).(\vec{a}+\vec{b})=3$ [ Since$|\vec{a}|^2=\vec{a}.\vec{a}$ 
or, $|\vec{a}|^2+2\vec{a}.\vec{b}+|\vec{b}|^2=3$ [ Since 

$\vec{a}.\vec{b}=\vec{b}.\vec{a}$ ]
or, $\vec{a}.\vec{b}=\dfrac{1}{2}$.....(1). [ Since $\vec{a},\vec{b}$ are unit vectors then $|\vec{a}|=1=|\vec{b}|$ ]

Now,
$(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) $ 
$=6|\vec{a}|^2-13\vec{a}.\vec{b}-5|\vec{b}|^2$

$=6-\dfrac{13}{2}-5$ [ Using (1)]
$=-\dfrac{11}{2}$.

Which of the following can represent a vector?

  1. The length of the distance between the points $(0,0)$ and $(2,7)$

  2. A line segment beginning at $(2,7))$ and ending at $(0,0)$

  3. The length of the distance between the points $(2,7)$ and $(0,0)$

  4. A line segment beginning at $(0,0)$ and ending at $(2,7)$


Correct Option: B,D
Explanation:
A vector is a quantity that can be described as having both magnitude and direction.
The length of the distance between any two points is a magnitude with no direction, so it can't represent a vector.
A line segment beginning at a certain point and ending at another can represent a vector. The magnitude of the vector is the distance between the points, and its direction is the direction from the initial point to the terminal point.
The following can represent a vector:
A line segment beginning at $(0,0)$ and ending at $(2,7)$.
A line segment beginning at $(2,7)$ and ending at $(0,0)$

Direction of zero vector

  1. does not exist

  2. towards origin

  3. indeterminate

  4. None of these


Correct Option: C
Explanation:

As, zero vector represents a point.
Direction is indeterminate.
Hence, option C.