Tag: option b: engineering physics

Questions Related to option b: engineering physics

A rope ladder with a length $\ell$ carrying a man ofmass $m$ at its end is attached to the basket ofballoon with a mass $\mathrm { M }$ . The entire system is in equilibrium in the air. As the man climbs up theladder into the balloon, the balloon descends bya height h. Then the potential energy of the man: 

  1. Increases by mg $( \ell - h )$

  2. Increases by mge

  3. Increases by mgh

  4. Increases by mg $( 2 \ell - h )$


Correct Option: C

A wheel rolling on a horizontal surface is an example of

  1. Stable equilibrium

  2. Unstable equilibrium 

  3. Neutral equilibrium 

  4. All of the above


Correct Option: B
Explanation:

Neutral equilibrium means that, with a small deviation, the body remains in equilibrium. An example is a wheel rolling on a horizontal surface. If you stop it at any point, the wheel will be in a state of equilibrium. A ball lying on a flat horizontal surface is in a state of neutral equilibrium.

In a stable equilibrium, the line of action of weight of the object lies _____ the base area of the object

  1. Inside

  2. outside

  3. cant say

  4. can be both


Correct Option: A

Three copper blocks of masses ${ M } _{ 1 }$, ${ M } _{ 2 }$, and ${ M } _{ 3 }$, kg respectively are brought into thermal contact till they reach equilibrium. Before contact, they were at ${ T } _{ 1 }$,${ T } _{ 2 }$,${ T } _{ 3 }$ $\left( { T } _{ 1 }{ >T } _{ 2 }>{ T } _{ 3 } \right)$. Assuming there is no heat loss to the surroundings, the equilibrium temperature T is (s is specific heat of copper)     

  1. $T=\dfrac { { T } _{ 1 }{ +T } _{ 2 }+{ T } _{ 3 } }{ 3 } $

  2. $T=\dfrac { { { { M } _{ 1 }T } _{ 1 }{ +{ M } _{ 2 }T } _{ 2 }+{ M } _{ 3 }{ T } _{ 3 } } }{ { M } _{ 1 }+{ M } _{ 2 }+{ M } _{ 3 } } $

  3. $T=\dfrac { { { M } _{ 1 }T } _{ 1 }{ +{ M } _{ 2 }T } _{ 2 }+{ M } _{ 3 }{ T } _{ 3 } }{ 3\left( { M } _{ 1 }+{ M } _{ 2 }+{ M } _{ 3 } \right) } $

  4. $T=\dfrac { { { M } _{ 1 }T } _{ 1 }s{ +{ M } _{ 2 }T } _{ 2 }s+{ M } _{ 3 }{ T } _{ 3 }s }{ { M } _{ 1 }+{ M } _{ 2 }+{ M } _{ 3 } }$


Correct Option: B
Explanation:
Let us assume that $T _1>T _2,T _3$ and $T _1>T>T _2,T _3$

Now heat loss by $M _1=$ Heat gained by $M _2$ and $M _3$

$M _1S(T _1-T)=M _2S(T-T _1)+M _3S(T-T _3)$

$\implies M _1T _1+M _2T _2+M _3T _3=(M _1+M _2+M _3)T$

$\implies T=\dfrac{M _1T _1+M _2T _2+M _3T _3}{M _1+M _2+M _3}$