Tag: measure of central tendency

Questions Related to measure of central tendency

Sum of squares of deviation of $10$ observations measured from $5$ is $17$ and sum of squares of observations is $170$ then mean of observation is

  1. $40.3$

  2. $4.5$

  3. $4$

  4. $4.03$

  5. $4.3$


Correct Option: D
Explanation:

$x _1,x _2,x _3,x _4...x _10\x _1^2+x _2^2+x _3^2+x _4^2+....x _10^2=17 (Given) \rightarrow (i)$

$(x _1-5)^2+(x _2-5)^2+(x _3-5)^2+....+(x _10-5)^2=17(Given)\rightarrow (i)$
$Mean (M)=\cfrac{x _1+x-2+x _3+....x _10}{10}\ \Rightarrow x _1+x _2+x _3+....+x _10=10M\rightarrow(iii)$
From equation $(ii)$ we get
$x _1^2+25-10x _1+x _2^2+25-10x _2+x _3^2+25-10x _3+...+x _10^2+25-10x _10=17\ \Rightarrow (x _1^2+x _2^2+....x _10^2)-10(x _1+x _2+x _3+....+x _10)+25\times10=17\ \Rightarrow 170-10(10M)+250=17\ \Rightarrow420-100M=17\ \Rightarrow100M=403\ \Rightarrow M=\cfrac{403}{100}=4.03$

The sum of the deviations of a set of values $x 1, x _2$, ...... $x _n$ measured from $50$ is $-10$ and the sum of deviations of the values from $46$ is $70$. The mean is __________.

  1. $49$

  2. $49.5$

  3. $49.75$

  4. $50$


Correct Option: B
Explanation:

Sum of deviations from $50$ is $-10$


$\Rightarrow \sum(xi - 50) = -10$
     $\sum x _i - 50\sum1 = -10$
     $\sum x _i - 50n = -10$

$\therefore y-50n=-10.....(1)$

Sum of deviations from $46$ is $70$

$\Rightarrow \sum(x _i - 46) = 70$
     $\sum x _i - 46\sum1 = 70$
     $\sum x _i - 46n = 70$

$\therefore y-46n=70.....(2)$


Solving $(1)$ and $(2)$, we get
$4n = 80$ i.e. $n=20$

Putting value of $n$ in $(1)$, we get
$y=990$

Mean $= \dfrac{\sum x _i}{n} = \dfrac{y}{n} = \dfrac{990}{20} = 49.5$