Tag: oscillatory motion

Questions Related to oscillatory motion

A pendulum bob has a speed of $ 3 $ $ \mathrm{ms}^{-1} $ at  its lowest position. The pendulum is$ 0.5$ $ \mathrm{m}  $ long. The speed of the bob, when the length makes an angle of $ 60^{\circ}  $ to the vertical will be $ (g=10 $ $ \left(n s^{-1}\right) $

  1. $3$ $ m s^{-1} $

  2. $
    1 / 3 \mathrm{ms}^{-1}
    $

  3. $
    1 / 2 m s^{-1}
    $

  4. $
    2 m s^{-1}
    $


Correct Option: D
Explanation:
Apply energy conservation theorem$,$ 
energy at lowest position of Bob $=$ energy$ ,$ when Bob makes $60°$ to the vertical 
$1/2 mv^2 = 1/2 mv₁^2 + mgl(1 - cos60°)$
Here $v$ is speed at Lowest position $, v₁$ is speed $,$ when it makes $60°$ with vertical and $l$ is length of pendulum $.$
$[$Actually, height of Bob $,$ when it makes $60°$ with vertical $= l(1 - cos60°)] $
$∴ v^2 = v₁^2 + 2gl(1 - cos60°)$ 
$3^2 = v₁^2 + 2 × 10 × 0.5 (1 - 1/2)$ 
$9 = v₁^2 + 5$ 
$v₁^2 = 4 ⇒v₁ = 2m/s $
So$,$ speed of Bob $= 2m/s$
Hence,
option $(D)$ is correct answer.

Which of the following will change the time period as they are taken to moon?

  1. A simple pendulum

  2. A physical pendulum

  3. A torsional pendulum

  4. A spring-mass system


Correct Option: A,B
Explanation:

$(i)$ For simple pendulum $T = 2\pi\sqrt{L/g}$
$(ii)$ For physical pendulum $T = 2\pi\sqrt{I/mgL}$
So in both above case, time period is changed if they are taken to the moon.
$(iii)$ For torsional pendulum $T = 2\pi\sqrt{I/C}$
$(iv)$ For spring-mass system $T = 2\pi\sqrt{m/k}$

A simple pendulum of length L and having a bob of mass m is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium positions, its time period of oscillation is:

  1. $ T = 2 \pi \sqrt{\dfrac{L}{g}}$

  2. $T = 2 \pi \sqrt{\dfrac{L}{\sqrt{g^2}+ \dfrac{v^4}{R^2}}}$

  3. $T = 2 \pi \sqrt{\dfrac{L}{\sqrt{g^2}+ \dfrac{v^2}{R}}}$

  4. $T = 2 \pi \sqrt{\dfrac{L}{\sqrt{g^2}- \dfrac{v^4}{R^2}}}$


Correct Option: B
Explanation:

The period of the pendulum, $T=2\pi \sqrt{\cfrac{L}{a}}$ where $a=$ $\text{resultant acceleration}\=\sqrt{g^2+{(\cfrac{V^2}{R})}^2}\quad\quad\quad\quad [\cfrac{V^2}{R}=\text{centripital acceleratiop }, g=\text{acceleration due to gravity}]$.

$\therefore T=2\pi\sqrt{\cfrac{L}{g^2+\cfrac{V^4}{R^2}}}$
Option B is the correct answer.


In a simple harmonic motion

  1. the potential energy is always equal to the kinetic energy

  2. the potential energy is never equal to the kinetic energy

  3. the average potential energy in any time interval is equal to the average kinetic energy in that time interval

  4. the average potential energy in one time period is equal to the average kinetic energy in this period.


Correct Option: D

An object is attached to the bottom of a light vertical spring and set vibrating. The maximum speed of the object is 15 ${ cms }^{ -1 }$ and the period is 628 milli-seconds. The amplitude of the motion in centimeters is :

  1. 3.0

  2. 2.0

  3. 1.5

  4. 1.0


Correct Option: C
Explanation:

Given,


$T=628ms=0.628s$


$v _{max}=15cm/s=0.15m/s$

The maximum speed of the object is given by

$v _{max}=A\omega=A\dfrac{2\pi}{T}$

Amplitude, $A=\dfrac{v _{max}T}{2\pi}$

$A=\dfrac{0.15\times 0.628}{2\times 3.14}=0.015 m$

$A=1.5cm$

The correct option is C.

If a body mass $36 gm$ moves with S,H,M of amplitude $A=13$ and period  $T=12 sec$. At a time $t=0$ the displacement is $x=+13 cm$. The shortest time of passage from $x=+6.5$ cm to $x=-6.5$ is

  1. 4 sec

  2. 2 sec

  3. 6 sec

  4. 3 sec


Correct Option: B
Explanation:

$\begin{array}{l} m=3bg,\, A=13,T=125 \ displacementx\left( t \right) =13\sin  \left( { \frac { { 2\pi t } }{ T }  } \right)  \end{array}$

Shortest time is at maximum slope which crosses zero. It will be from $ - 6.5\,\,to\,\,6.5\,\,$ or 2 times from $0\,to\,\,6.5$
$\begin{array}{l} 6.5=13\sin  \left( { \frac { { 2\pi t } }{ { 12 } }  } \right)  \ 0.5=\sin  \left[ { \left( { \frac { \pi  }{ 6 }  } \right) t } \right]  \ t=1\, \sec   \ total\, \, time=\, 2\times 1=2 \end{array}$

A function of time given by $\left(\sin{\omega t}-\cos{\omega t}\right)$ represents

  1. simple harmonic motion

  2. non-periodic motion

  3. periodic but not simple harmonic motion

  4. oscillatory but not simple harmonic motion


Correct Option: A
Explanation:

$\begin{array}{l} \sin  \omega t-\cos  \omega t \ =\sqrt { 2 } \left[ { \frac { 1 }{ { \sqrt { 2 }  } } \sin  \omega t-\frac { 1 }{ { \sqrt { 2 }  } } \cos  \omega t } \right]  \ =\sqrt { 2 } \left[ { \sin  \omega t\times \cos  \frac { \pi  }{ 4 } -\cos  \omega t\times \sin  \frac { \pi  }{ 4 }  } \right]  \ =\sqrt { 2 } \sin  \left( { \omega t-\frac { \pi  }{ 4 }  } \right)  \ this\, \, function\, \, represents\, \, SHM\, \, as\, \, it\, \, can\, \, be\, \, written\, \, in\, \, the\, \, form: \ a\sin  \left( { \omega t+\phi  } \right)  \ its\, \, period\, \, is,\, \, \frac { { 2\pi  } }{ \omega  }  \end{array}$

Hence,
option $(A)$ is correct answer.

A particle is subjected to two simple harmonic motions along $x$ and $y$ directions according to $x=3\sin\ 100\pi t$ $y=4\sin\ 100\pi t$

  1. Motion of particle will be on ellipse travelling in clockwise direction.

  2. Motion of particle will be on a straight line with slope $4/3$

  3. Motion will be simple harmonic motion with amplitude $5$.

  4. Phase difference between two motions is $\pi/2$.


Correct Option: A

A ring whose diameter is 1 meter, oscillates simple harmonically in a vertical plane about a nail fixed at its circumference and perpendicular to plane of ring. The time period will be

  1. 1/4 sec

  2. 1/2 sec

  3. 2sec

  4. None of these


Correct Option: C

Sitar maestro Ravi Shankar is playing sitar on its strings, and you, as a physicist (unfortunately without musical ears!), observed the following oddities.
I. The greater the length of a vibrating string, the smaller its frequency.
II. The greater the tension in the string, the greater is the frequency.
III. The heavier the mass of the string, the smaller the frequency.
IV. The thinner the wire, the higher its frequency.
The maestro signalled the following combination as correct one.

  1. II, III and IV

  2. I, II and IV

  3. I, II and III

  4. I, II, III and IV


Correct Option: D
Explanation:

Guitar string is a standing wave as both the ends of guitar string are fixed.

$f \propto \cfrac{1}{length}$
$f \propto \sqrt{tension}$
$f \propto \cfrac{1}{\sqrt{\mu}}$, where $\mu$ is mass per unit length.
$f \propto \cfrac{1}{\text{thickness of wire}}$